05 Training versus Testing

时间:2022-09-29 08:19:29

train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0;

test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g)。

05 Training versus Testing

如果|H|小,更易保证test(不等式右式小),难保证train(选择少);

如果|H|大,更易保证train(选择多),难保证test(不等式右式大)。

如果|H|无限呢?2Mexp(...)可能大于1了,对于概率值上限来说失去意义。那能否用个有限值代替|H|呢?

看一下2Mexp(...)这个上限的来源。

05 Training versus Testing

本质是求并集,但是得出2Mexp(...)这个式子是默认无交集的情况下求的并集,

实际上,A确定后,H形式也确定,

给定D,在H里存在相似的h,这些h在D上的表现一致,即存在交集,所以2Mexp(...)这个式子作为上限来说过大了。

给定D,可通过将H里相似h分到同类里(同类里h的数目可能是无限的),将|H|变为类数,就可能将无限的|H|变为有限的类数。

定义给定D下,将|H|分得的类为dichotomies,每一个dichotomy在D上表现相同。

假设D里有2个样本点,将D分为OO、OX、XO、XX的h分别归为一类,共有4类。

可以发现dichotomies的数量是依赖于具体D和H的,但是dichotomies的数量的最大值只依赖与D里样本点的个数N和H,

例如感知器算法里,N=2时,最大值不超过2的N次方,这里是4。

定义dichotomies的数量的最大值为N的成长函数,记为mH(N)。------只和H、N有关

即给定样本数N,H里假设类数是小于等于mH(N)的。

对于2维感知机,mH(1)=2,mH(2)=4,mH(3)=8,mH(4)=14。

05 Training versus Testing

05 Training versus Testing

05 Training versus Testing

可以看出,成长函数可能是多项式型的(好的,能保证只要N足够大,2mH(N)exp(...)小),也可能是指数型的(坏的)。

对于2维及以上维数的感知机,成长函数是多项式型的吗?

05 Training versus Testing

shatter:如果H里的假设能够保证k个输入能够输出任意标签的组合,称H能shatter这k个输入。

break point k:H不能shatter这k个输入,称k为断点。

05 Training versus Testing

05 Training versus Testing

猜想,只要存在断点,就能保证成长函数是多项式型,进而保证了test。

05 Training versus Testing的更多相关文章

  1. 机器学习基石:05 Training versus Testing

    train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...

  2. 机器学习基石笔记:05 Training versus Testing

    train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...

  3. 机器学习基石 5 Training versus Testing

    机器学习基石 5 Training versus Testing Recap and Preview 回顾一下机器学习的流程图: 机器学习可以理解为寻找到 \(g\),使得 \(g \approx f ...

  4. Coursera台大机器学习课程笔记4 -- Training versus Testing

     这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题:    为什么算法PLA可以正确的work?因为前面的知识告诉我们,只有当假设的个数有限的时候,我们才 ...

  5. 【Training versus Testing】林轩田机器学习基石

    接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够 ...

  6. 理解机器为什么可以学习(二)---Training versus Testing

    前边由Hoeffding出发讨论了为什么机器可以学习,主要就是在N很大的时候Ein PAC Eout,选择较小的Ein,这样的Eout也较小,但是当时还有一个问题没有解决,就是当时的假设的h的集合是个 ...

  7. 林轩田机器学习基石课程学习笔记5 — Training versus Testing

    上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...

  8. Note for video Machine Learning and Data Mining——training vs Testing

    Here is the note for lecture five. There will be several points  1. Training and Testing  Both of th ...

  9. 机器学习基石的泛化理论及VC维部分整理(第五讲)

    第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cd ...

随机推荐

  1. 用javascript实现一个2048游戏

    早就想自己写一个2048游戏了,昨晚闲着没事,终于写了一个 如下图,按方向键开始玩吧. 如果觉得操作不方便,请直接打开链接玩吧: http://gujianbo.1kapp.com/2048/2048 ...

  2. UVA 11853 [dfs乱搞]

    /* 大连热身E题 不要低头,不要放弃,不要气馁,不要慌张 题意: 在1000×1000的格子内有很多个炮弹中心,半径给定. 为某人能否从西部边界出发,从东部边界走出. 不能输出不能,能的话输出最北边 ...

  3. Hibernate连接mysql数据库并自动创建表

    天才第一步,雀氏纸尿裤,Hibernate第一步,连接数据库. Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系,是一个 ...

  4. css随记01编辑技巧,背景与边框

    代码优化 一个按钮的例子,使其值同比例变化; button{ color: white; background: #58a linear-gradient(#77a0bb, #58a); paddin ...

  5. Android 图片的放大缩小拖拉

    package com.example.ImageView; import android.annotation.SuppressLint; import android.content.Contex ...

  6. 高性能CSS(二)

    避免CSS表达式 CSS表达式是动态设置CSS属性的强大(但危险)方法.Internet Explorer从第5个版本开始支持CSS表达式.下面的例子中,使用CSS表达式可以实现隔一个小时切换一次背景 ...

  7. HDU-2548 两军交锋

    两军交锋 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  8. DM6437 C64X+ EDMA 疑惑总结记录

    总结一下DM6437中的EDMA的使用出现的问题,方便以后再开发定位问题. 1.EDMA Link 和 Chain的区别 link实现了DMA的自动重加载(非静态模式),需要两个param chain ...

  9. GMTED2010 高程数据下载

    http://topotools.cr.usgs.gov/GMTED_viewer/viewer.htm

  10. 【转】[Android实例] Handler+ExecutorService(线程池)+MessageQueue模式+缓存模式

    android线程池的理解,晚上在家无事 预习了一下android异步加载的例子,也学习到了一个很重要的东东 那就是线程池+缓存  下面看他们的理解. [size=1.8em]Handler+Runn ...