BZOJ_3747_[POI2015]Kinoman_线段树

时间:2022-09-25 19:27:44

BZOJ_3747_[POI2015]Kinoman_线段树

Description

共有m部电影,编号为1~m,第i部电影的好看值为w[i]。
在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。
你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。

Input

第一行两个整数n,m(1<=m<=n<=1000000)。
第二行包含n个整数f[1],f[2],…,f[n](1<=f[i]<=m)。
第三行包含m个整数w[1],w[2],…,w[m](1<=w[j]<=1000000)。

Output

输出观看且仅观看过一次的电影的好看值的总和的最大值。

Sample Input

9 4
2 3 1 1 4 1 2 4 1
5 3 6 6

Sample Output

15
样例解释:
观看第2,3,4,5,6,7天内放映的电影,其中看且仅看过一次的电影的编号为2,3,4。


预处理出来第$i$天下一次播放$f[i]$的日期$nxt[i]$,类似这道题http://www.cnblogs.com/suika/p/8890570.html

先求出左端点为$1$的情况,即出现第一次$+1$,第二次$-1$.

然后考虑删除掉$i$这个位置对答案的贡献,在$i+1\thicksim nxt[i]$的位置上减一,在$nxt[i]\thicksim nxt[nxt[i]]-1$的位置上加一

每次求出$i\thicksim n$的最大值,可以用线段树维护。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 1000050
#define ls p<<1
#define rs p<<1|1
typedef long long ll;
char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9')s=nc();
while(s>='0'&&s<='9')x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
ll t[N<<2],add[N<<2];
int f[N],w[N],nxt[N],n,m,now[N];
void pushdown(int p) {
ll d;
if(d=add[p]) {
add[ls]+=d; add[rs]+=d;
t[ls]+=d; t[rs]+=d;
add[p]=0;
}
}
/*ll qmx(int l,int r,int x,int y,int p) {
if(x<=l&&y>=r) return t[p];
int mid=(l+r)>>11;
ll re=0;
pushdown(p);
if(x<=mid) re=max(re,qmx(l,mid,x,y,ls));
if(y>mid) re=max(re,qmx(mid+1,r,x,y,rs));
return re;
}*/
void update(int l,int r,int x,int y,ll v,int p) {
if(x<=l&&y>=r) {
t[p]+=v; add[p]+=v;
return ;
}
pushdown(p);
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,y,v,ls);
if(y>mid) update(mid+1,r,x,y,v,rs);
t[p]=max(t[ls],t[rs]);
}
int main() {
n=rd(); m=rd();
register int i;
for(i=1;i<=n;i++) f[i]=rd();
for(i=1;i<=m;i++) w[i]=rd();
for(i=n;i;i--) nxt[i]=now[f[i]],now[f[i]]=i;
for(i=1;i<=m;i++) {
if(now[i]) {
if(!nxt[now[i]]) update(1,n,now[i],n,w[i],1);
else update(1,n,now[i],nxt[now[i]]-1,w[i],1);
}
}
ll ans=0;
for(i=1;i<=n;i++) {
ans=max(ans,t[1]);
if(nxt[i]) {
update(1,n,i,nxt[i]-1,-w[f[i]],1);
if(nxt[nxt[i]]) update(1,n,nxt[i],nxt[nxt[i]]-1,w[f[i]],1);
else update(1,n,nxt[i],n,w[f[i]],1);
}else update(1,n,i,n,-w[f[i]],1);
}
printf("%lld\n",ans);
}

BZOJ_3747_[POI2015]Kinoman_线段树的更多相关文章

  1. &lbrack;bzoj3747&rsqb;&lbrack;POI2015&rsqb;Kinoman&lowbar;线段树

    Kinoman bzoj-3747 POI-2015 题目大意:有m部电影,第i部电影的好看值为w[i].现在放了n天电影,请你选择一段区间l~r使得l到r之间的好看值总和最大.特别地,如果同一种电影 ...

  2. BZOJ&lowbar;4383&lowbar;&lbrack;POI2015&rsqb;Pustynia&lowbar;线段树优化建图&plus;拓扑排序

    BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序 Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息 ...

  3. Bzoj 3747&colon; &lbrack;POI2015&rsqb;Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  4. 【BZOJ3747】&lbrack;POI2015&rsqb;Kinoman 线段树

    [BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...

  5. 【BZOJ4383】&lbrack;POI2015&rsqb;Pustynia 线段树优化建图

    [BZOJ4383][POI2015]Pustynia Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r ...

  6. 【bzoj3747】Kinoman&lbrack;POI2015&rsqb;(线段树)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3747 对于这种题,考虑固定区间的右端点为r,设区间左端点为l能取得的好看值总和为a[l] ...

  7. 【bzoj3747】&lbrack;POI2015&rsqb;Kinoman 线段树区间合并

    题目描述 一个长度为n的序列,每个数为1~m之一.求一段连续子序列,使得其中之出现过一次的数对应的价值之和最大. 输入 第一行两个整数n,m(1<=m<=n<=1000000). 第 ...

  8. 3747&colon; &lbrack;POI2015&rsqb;Kinoman&vert;线段树

    枚举左区间线段树维护最大值 #include<algorithm> #include<iostream> #include<cstdlib> #include&lt ...

  9. 【bzoj4383】&lbrack;POI2015&rsqb;Pustynia 线段树优化建图&plus;差分约束系统&plus;拓扑排序

    题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...

随机推荐

  1. &period;NET的EF框架中:在应用程序配置文件中找不到名为&ldquo&semi;&rdquo&semi;的连接字符串问题

    今天在使用EF Code First框架时,当把模型都定义好了,想通过程序包管理控制台利用enable-migrations –force来生成数据库表的时候报错了,如下: 找不到连接字符串,但是我仔 ...

  2. centos 随意截屏

    yum install kdegraphics 菜单路径: applications(应用程序)/Graphics(图形图像)/KSnapshot

  3. weizmann数据库

    http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

  4. &lpar;二&rpar;iOS如何把所有界面的状态栏的字体颜色都设置为白色

    第一步:在info.plist中添加一个字段:view controller -base status bar 设置为NO 第二步:在一个所有界面都继承的父类里添加: if (IOS7_OR_LATE ...

  5. 在VS2010中ActiveX控件注册方法,使用regsvr32命令

    上一篇小编展示了如何设置VS2010自带的ActiveX控件的容器测试程序,现在为大家演示一下如何注册ActiveX控件. 首先简单了解一下ActiveX控件的知识,ActiveX控件:简单来说,就是 ...

  6. ExtJs之Panel基本布局

    <!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...

  7. Android系统移植与驱动开发--第三章 Git使用入门及在学习中有感

    第三章 Git使用入门 使用Git的目的是减少各种版本的Linux的压缩大小,提供源代码在Linux上进行编译. 在这一个章节中,其实就是关键步骤的操作,虽然Git与我们学习的android没有很大的 ...

  8. DMA为什么比轮询、中断方式性能要卓越非常多?(你不懂)

    本文原创为freas_1990,转载请标明出处:http://blog.csdn.net/freas_1990/article/details/35735397 假设是计算机专业出身的同学,都听过一个 ...

  9. c&num;多线程同步之lock

    一提起lock,想必大家都很熟悉,因为它易用,顾名思义,就是一把锁,常用于多线程的同步,一次只允许一个线程进入.最近遇到一个很诡异的bug. private static readonly objec ...

  10. Runtime个别API的使用

    Runtime 关于属性部分API的说明以及使用方法 使用Runtime机制需要引入头文件: #import <objc/runtime.h> 1:  Ivar *class_copyIv ...