题目描述
输入
输出
样例输入
3 4
1
0
4
样例输出
26
25
29
题解
矩阵乘法
令原数和加密后的数构成一个矩阵,设矩阵a为[ci,sum-ci],则加密一次后的矩阵A为[sum-ci,(n-1)sum-(sum-ci)],
因为显而易见所有数加密一次后总和变为原来的n-1倍。
推出a乘矩阵[[0,n-1],[1,n-2]]可以得到A,设这个矩阵为b。
按照这个规律,加密T次和T+1次构成的矩阵为a*bt。
对于每个数,处理出矩阵a,就可以用快速幂解决a*bt,得到加密t次的数。
注意要开long long
#include <cstdio>
#include <cstring>
#define MOD 98765431
typedef long long lint;
struct matrix
{
int x , y;
lint num[3][3];
matrix operator*(const matrix a) const
{
matrix t;
int i , j , k;
memset(t.num , 0 , sizeof(t.num));
t.x = x , t.y = a.y;
for(i = 1 ; i <= t.x ; i ++ )
for(j = 1 ; j <= t.y ; j ++ )
for(k = 1 ; k <= y ; k ++ )
t.num[i][j] = (t.num[i][j] + num[i][k] * a.num[k][j]) % MOD;
return t;
}
}a , b;
lint c[50010];
matrix qpow(matrix a , int b)
{
matrix t;
int i;
t.x = a.x , t.y = a.y;
memset(t.num , 0 , sizeof(t.num));
for(i = 1 ; i <= t.x ; i ++ )
t.num[i][i] = 1;
while(b)
{
if(b & 1)
t = t * a;
a = a * a;
b >>= 1;
}
return t;
}
int main()
{
int n , t , i;
lint sum = 0;
scanf("%d%d" , &n , &t);
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &c[i]) , sum = (sum + c[i]) % MOD;
b.x = b.y = 2;
b.num[1][1] = 0 , b.num[1][2] = n - 1 , b.num[2][1] = 1 , b.num[2][2] = n - 2;
b = qpow(b , t);
a.x = 1 , a.y = 2;
for(i = 1 ; i <= n ; i ++ )
{
a.num[1][1] = c[i] , a.num[1][2] = (sum - c[i] + MOD) % MOD;
printf("%lld\n" , (a * b).num[1][1]);
}
return 0;
}
【bzoj1712】[Usaco2007 China]Summing Sums 加密 矩阵乘法的更多相关文章
-
BZOJ1712 : [Usaco2007 China]Summing Sums 加密
设$s[i]$为进行$i$次加密后所有奶牛数字的和,有$s[i]=(n-1)s[i-1]$. 设$c[i]$为某头固定的奶牛进行$i$次加密后的数字, 若$i$为奇数,有: \[c[i]=((1-n) ...
-
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法 Description 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛 ...
-
bzoj 1712: [Usaco2007 China]Summing Sums 加密
1712: [Usaco2007 China]Summing Sums 加密 Description 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛的加密方法.由于她 ...
-
1712: [Usaco2007 China]Summing Sums 加密
1712: [Usaco2007 China]Summing Sums 加密 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 338 Solved: 12 ...
-
【BZOJ1706】[usaco2007 Nov]relays 奶牛接力跑 矩阵乘法
[BZOJ1706][usaco2007 Nov]relays 奶牛接力跑 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项 ...
-
倍增&;矩阵乘法 专题复习
倍增&矩阵乘法 专题复习 PreWords 这两个基础算法我就不多说啦,但是还是要介绍一下" 广义矩阵 "乘法 其实就是把矩阵换成取\(max\),然后都一样... 据神仙 ...
-
*HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
-
*HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
-
CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
随机推荐
-
C++继承和多态
继承 访问控制 基类的成员函数可以有public.protected.private三种访问属性. 类的继承方式有public.protected.private三种. 公有继承 当类的继承方式为pu ...
-
android studio 导入的项目有乱码-笔记2
如果导入的项目原本就是UTF-8.且android studio编码设置为UTF-8就不会乱码.这种情况多是导入的原项目编码为GBK. 解决方法:在android studio 右下角,切换编码为GB ...
-
关于getch()函数
从百度上得知: 这个函数是一个不回显函数,当用户按下某个字符时,函数自动读取,无需按回车,有的C语言命令行程序会用到此函数做游戏,但是这个函数并非标准函数,要注意移植性! 所以有这样的一个接口,那就很 ...
-
du---查看文件夹大小-并按大小进行排序
使用df 命令查看当前磁盘使用情况: df -lh [root@gaea-dev-xjqxz-3 ~]$ df -lh Filesystem Size Used Avail Use% Mounted ...
-
js中的call、apply、bind
在js中每个函数都包含两个非继承而来的方法:call()和apply() call和apply的作用都是在特定的作用域中将函数绑定到另外一个对象上去运行,即可以用来重新定义函数的执行环境,两者仅在定义 ...
-
功率 dbm 和 mw 的换算
射频知识; 功率/电平(dBm):放大器的输出能力,一般单位为w.mw.dBm.dBm是取1mw作基准值,以分贝表示的绝对功率电平. 换算公式:电平(dBm)=10lgw5W → 10lg5000 ...
-
[AH2017/HNOI2017]礼物
题解: 水题 化简一波式子会发现就是个二次函数再加上一个常数 而只有常数中的-2sigma(xiyi)是随移动而变化的 所以只要o(1)求出二次函数最大值然后搞出sigma(xiyi)就可以了 这个东 ...
-
JS 动态生成JSON对象
JS 动态生成JSON对象,一般用到JSON传递参数的时候,会用到. function onGeneratedRow(columnsResult) { var jsonData = {}; colum ...
-
LOJ#2983. 「WC2019」数树
传送门 抄题解 \(Task0\),随便做一下,设 \(cnt\) 为相同的边的个数,输出 \(y^{n-cnt}\) \(Task1\),给定其中一棵树 设初始答案为 \(y^n\),首先可以发现, ...
-
下载SpringJar包
方法一: 地址:http://repo.spring.io/release/org/springframework/spring/ 此方法简单. 方法二: 安装TortoiseSVN后,在电脑的任意空 ...