java 中volatile和lock原理分析
volatile和lock是Java中用于线程协同同步的两种机制。
Volatile
volatile是Java中的一个关键字,它的作用有
- 保证变量的可见性
- 防止重排序
- 保证64位变量(long,double)的原子性读写
volatile在Java语言规范中规定的是
1
2
3
4
5
6
7
8
9
|
The Java programming language allows threads to access shared variables (§ 17.1 ). As a rule, to ensure
that shared variables are consistently and reliably updated, a thread should ensure that it
has exclusive use of such variables by obtaining a lock that, conventionally, enforces mutual
exclusion for those shared variables.
The Java programming language provides a second mechanism, volatile fields, that is more convenient
than locking for some purposes.
A field may be declared volatile , in which case the Java Memory Model ensures that all threads
see a consistent value for the variable .
It is a compile-time error if a final variable is also declared volatile .
|
Java内存模型中规定了volatile的happen-before效果,对volatile变量的写操作happen-before于后续的读。这样volatile变量能够确保一个线程的修改对其他线程可见。volatile因为不能保证原子性,所以不能在有约束或后验条件的场景下使用,如i++,常用的场景是stop变量保证系统停止对其他线程可见,double-check lock单例中防止重排序来保证安全发布等。
以下面这段代码为例
1
2
3
4
5
6
7
|
public class TestVolatile {
private static volatile boolean stop = false ;
public static void main(String[] args) {
stop = true ;
boolean b = stop;
}
}
|
stop字段声明为volatile类型后,编译后的字节码中其变量的access_flag中ACC_VOLATILE位置为1。
关键的字节码内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
public static void main(java.lang.String[]);
descriptor: ([Ljava/lang/String;)V
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=1, locals=2, args_size=1
0: iconst_1
1: putstatic #2 // Field stop:Z
4: getstatic #2 // Field stop:Z
7: istore_1
8: return
LineNumberTable:
line 14: 0
line 15: 4
line 16: 8
LocalVariableTable:
Start Length Slot Name Signature
0 9 0 args [Ljava/lang/String;
8 1 1 b Z
static {};
descriptor: ()V
flags: ACC_STATIC
Code:
stack=1, locals=0, args_size=0
0: iconst_0
1: putstatic #2 // Field stop:Z
4: return
LineNumberTable:
line 11: 0
}
|
通过hsdis查看虚拟机产生的汇编代码。
测试环境为java version “1.8.0_45”,MACOS10.12.1 i386:x86-64
在执行参数上添加
1
2
3
4
5
6
|
-XX:+UnlockDiagnosticVMOptions
-XX:+LogCompilation
-XX:+PrintAssembly
-Xcomp
-XX:CompileCommand=dontinline,*TestVolatile.main
-XX:CompileCommand=compileonly,*TestVolatile.main
|
查看main方法的汇编指令结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
Decoding compiled method 0x000000010c732c50 :
Code:
[Disassembling for mach= 'i386:x86-64' ]
[Entry Point]
[Verified Entry Point]
[Constants]
# {method} { 0x000000012422a2c8 } 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile'
# parm0: rsi:rsi = '[Ljava/lang/String;'
# [sp+ 0x40 ] (sp of caller)
0x000000010c732da0 : mov %eax,- 0x14000 (%rsp)
0x000000010c732da7 : push %rbp
0x000000010c732da8 : sub $ 0x30 ,%rsp
0x000000010c732dac : movabs $ 0x12422a448 ,%rdi ; {metadata(method data for {method} { 0x000000012422a2c8 } 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile' )}
0x000000010c732db6 : mov 0xdc (%rdi),%ebx
0x000000010c732dbc : add $ 0x8 ,%ebx
0x000000010c732dbf : mov %ebx, 0xdc (%rdi)
0x000000010c732dc5 : movabs $ 0x12422a2c8 ,%rdi ; {metadata({method} { 0x000000012422a2c8 } 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile' )}
0x000000010c732dcf : and $ 0x0 ,%ebx
0x000000010c732dd2 : cmp $ 0x0 ,%ebx
0x000000010c732dd5 : je 0x000000010c732e03 ;*iconst_1
; - com.concurrent.volatiles.TestVolatile::main @0 (line 14 )
0x000000010c732ddb : movabs $ 0x76adce798 ,%rsi ; {oop(a 'java/lang/Class' = 'com/concurrent/volatiles/TestVolatile' )}
0x000000010c732de5 : mov $ 0x1 ,%edi
0x000000010c732dea : mov %dil, 0x68 (%rsi)
0x000000010c732dee : lock addl $ 0x0 ,(%rsp) ;*putstatic stop
; - com.concurrent.volatiles.TestVolatile::main @1 (line 14 )
0x000000010c732df3 : movsbl 0x68 (%rsi),%esi ;*getstatic stop
; - com.concurrent.volatiles.TestVolatile::main @4 (line 15 )
0x000000010c732df7 : add $ 0x30 ,%rsp
0x000000010c732dfb : pop %rbp
0x000000010c732dfc : test %eax,- 0x3adbd02 (%rip) # 0x0000000108c57100
; {poll_return}
0x000000010c732e02 : retq
0x000000010c732e03 : mov %rdi, 0x8 (%rsp)
0x000000010c732e08 : movq $ 0xffffffffffffffff ,(%rsp)
0x000000010c732e10 : callq 0x000000010c7267e0 ; OopMap{rsi=Oop off= 117 }
;*synchronization entry
; - com.concurrent.volatiles.TestVolatile::main@- 1 (line 14 )
; {runtime_call}
0x000000010c732e15 : jmp 0x000000010c732ddb
0x000000010c732e17 : nop
0x000000010c732e18 : nop
0x000000010c732e19 : mov 0x2a8 (%r15),%rax
0x000000010c732e20 : movabs $ 0x0 ,%r10
0x000000010c732e2a : mov %r10, 0x2a8 (%r15)
0x000000010c732e31 : movabs $ 0x0 ,%r10
0x000000010c732e3b : mov %r10, 0x2b0 (%r15)
0x000000010c732e42 : add $ 0x30 ,%rsp
0x000000010c732e46 : pop %rbp
0x000000010c732e47 : jmpq 0x000000010c6940e0 ; {runtime_call}
[Exception Handler]
|
可以看到在mov %dil,0x68(%rsi)给stop赋值后增加了lock addl $0x0,(%rsp)
IA32中对lock的说明是
1
2
3
|
The LOCK # signal is asserted during execution of the instruction following
the lock prefix. This signal can be used in a multiprocessor system to ensure
exclusive use of shared memory while LOCK # is asserted
|
lock用于在多处理器中执行指令时对共享内存的独占使用。它的副作用是能够将当前处理器对应缓存的内容刷新到内存,并使其他处理器对应的缓存失效。另外还提供了有序的指令无法越过这个内存屏障的作用。
Lock
Java中提供的锁的关键字是synchronized, 可以加在方法块上,也可以加在方法声明中。
synchronized关键字起到的作用是设置一个独占访问临界区,在进入这个临界区前要先获取对应的监视器锁,任何Java对象都可以成为监视器锁,声明在静态方法上时监视器锁是当前类的Class对象,实例方法上是当前实例。
synchronized提供了原子性、可见性和防止重排序的保证。
JMM中定义监视器锁的释放操作happen-before与后续的同一个监视器锁获取操作。再结合程序顺序规则就可以形成内存传递可见性保证。
下面以一段代码查看各个层次的实现
1
2
3
4
5
6
7
8
9
10
11
|
public class TestSynchronize {
private int count;
private void inc() {
synchronized ( this ) {
count++;
}
}
public static void main(String[] args) {
new TestSynchronize().inc();
}
}
|
编译后inc方法的字节码为
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
private void inc();
descriptor: ()V
flags: ACC_PRIVATE
Code:
stack= 3 , locals= 3 , args_size= 1
0 : aload_0
1 : dup
2 : astore_1
3 : monitorenter
4 : aload_0
5 : dup
6 : getfield # 2 // Field count:I
9 : iconst_1
10 : iadd
11 : putfield # 2 // Field count:I
14 : aload_1
15 : monitorexit
16 : goto 24
19 : astore_2
20 : aload_1
21 : monitorexit
22 : aload_2
23 : athrow
24 : return
Exception table:
from to target type
4 16 19 any
19 22 19 any
LineNumberTable:
line 14 : 0
line 15 : 4
|
在synchronized代码块前后增加的monitorenter和monitorexist两个JVM字节码指令,指令的参数是this引用。
hotspot中对于monitor_enter和monitor_exit的处理是
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
if (!GenerateSynchronizationCode) return ;
// for slow path, use debug info for state after successful locking
CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
__ load_stack_address_monitor(monitor_no, lock);
// for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
__ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
}
void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
if (!GenerateSynchronizationCode) return ;
// setup registers
LIR_Opr hdr = lock;
lock = new_hdr;
CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
__ load_stack_address_monitor(monitor_no, lock);
__ unlock_object(hdr, object, lock, scratch, slow_path);
}
|
inc方法在本机上输出的汇编代码为
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
Decoding compiled method 0x0000000115be3e50:
Code:
[Entry Point]
[Constants]
# {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize'
# [sp+0x50] (sp of caller)
0x0000000115be3fc0: mov 0x8(%rsi),%r10d
0x0000000115be3fc4: shl $0x3,%r10
0x0000000115be3fc8: cmp %rax,%r10
0x0000000115be3fcb: jne 0x0000000115b1de20 ; {runtime_call}
0x0000000115be3fd1: data32 data32 nopw 0x0(%rax,%rax,1)
0x0000000115be3fdc: data32 data32 xchg %ax,%ax
[Verified Entry Point]
0x0000000115be3fe0: mov %eax,-0x14000(%rsp)
0x0000000115be3fe7: push %rbp
0x0000000115be3fe8: sub $0x40,%rsp
0x0000000115be3fec: movabs $0x113082848,%rax ; {metadata(method data for {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize' )}
0x0000000115be3ff6: mov 0xdc(%rax),%edi
0x0000000115be3ffc: add $0x8,%edi
0x0000000115be3fff: mov %edi,0xdc(%rax)
0x0000000115be4005: movabs $0x113082328,%rax ; {metadata({method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize' )}
0x0000000115be400f: and $0x0,%edi
0x0000000115be4012: cmp $0x0,%edi
0x0000000115be4015: je 0x0000000115be418d ;*aload_0
; - com.concurrent.lock.TestSynchronize::inc@0 (line 14)
0x0000000115be401b: lea 0x20(%rsp),%rdi
0x0000000115be4020: mov %rsi,0x8(%rdi)
0x0000000115be4024: mov (%rsi),%rax
0x0000000115be4027: mov %rax,%rbx
0x0000000115be402a: and $0x7,%rbx
0x0000000115be402e: cmp $0x5,%rbx
0x0000000115be4032: jne 0x0000000115be40b9
0x0000000115be4038: mov 0x8(%rsi),%ebx
0x0000000115be403b: shl $0x3,%rbx
0x0000000115be403f: mov 0xa8(%rbx),%rbx
0x0000000115be4046: or %r15,%rbx
0x0000000115be4049: xor %rax,%rbx
0x0000000115be404c: and $0xffffffffffffff87,%rbx
0x0000000115be4050: je 0x0000000115be40e1
0x0000000115be4056: test $0x7,%rbx
0x0000000115be405d: jne 0x0000000115be40a6
0x0000000115be405f: test $0x300,%rbx
0x0000000115be4066: jne 0x0000000115be4085
0x0000000115be4068: and $0x37f,%rax
0x0000000115be406f: mov %rax,%rbx
0x0000000115be4072: or %r15,%rbx
0x0000000115be4075: lock cmpxchg %rbx,(%rsi)
0x0000000115be407a: jne 0x0000000115be41a4
0x0000000115be4080: jmpq 0x0000000115be40e1
0x0000000115be4085: mov 0x8(%rsi),%ebx
0x0000000115be4088: shl $0x3,%rbx
0x0000000115be408c: mov 0xa8(%rbx),%rbx
0x0000000115be4093: or %r15,%rbx
0x0000000115be4096: lock cmpxchg %rbx,(%rsi)
0x0000000115be409b: jne 0x0000000115be41a4
0x0000000115be40a1: jmpq 0x0000000115be40e1
0x0000000115be40a6: mov 0x8(%rsi),%ebx
0x0000000115be40a9: shl $0x3,%rbx
0x0000000115be40ad: mov 0xa8(%rbx),%rbx
0x0000000115be40b4: lock cmpxchg %rbx,(%rsi)
0x0000000115be40b9: mov (%rsi),%rax
0x0000000115be40bc: or $0x1,%rax
0x0000000115be40c0: mov %rax,(%rdi)
0x0000000115be40c3: lock cmpxchg %rdi,(%rsi)
0x0000000115be40c8: je 0x0000000115be40e1
0x0000000115be40ce: sub %rsp,%rax
0x0000000115be40d1: and $0xfffffffffffff007,%rax
0x0000000115be40d8: mov %rax,(%rdi)
0x0000000115be40db: jne 0x0000000115be41a4 ;*monitorenter
; - com.concurrent.lock.TestSynchronize::inc@3 (line 14)
0x0000000115be40e1: mov 0xc(%rsi),%eax ;*getfield count
; - com.concurrent.lock.TestSynchronize::inc@6 (line 15)
0x0000000115be40e4: inc %eax
0x0000000115be40e6: mov %eax,0xc(%rsi) ;*putfield count
; - com.concurrent.lock.TestSynchronize::inc@11 (line 15)
0x0000000115be40e9: lea 0x20(%rsp),%rax
0x0000000115be40ee: mov 0x8(%rax),%rdi
0x0000000115be40f2: mov (%rdi),%rsi
0x0000000115be40f5: and $0x7,%rsi
0x0000000115be40f9: cmp $0x5,%rsi
0x0000000115be40fd: je 0x0000000115be411a
0x0000000115be4103: mov (%rax),%rsi
0x0000000115be4106: test %rsi,%rsi
0x0000000115be4109: je 0x0000000115be411a
0x0000000115be410f: lock cmpxchg %rsi,(%rdi)
0x0000000115be4114: jne 0x0000000115be41b7 ;*monitorexit
; - com.concurrent.lock.TestSynchronize::inc@15 (line 16)
0x0000000115be411a: movabs $0x113082848,%rax ; {metadata(method data for {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize' )}
0x0000000115be4124: incl 0x108(%rax) ;*goto
; - com.concurrent.lock.TestSynchronize::inc@16 (line 16)
0x0000000115be412a: add $0x40,%rsp
0x0000000115be412e: pop %rbp
0x0000000115be412f: test %eax,-0x684e035(%rip) # 0x000000010f396100
; {poll_return}
0x0000000115be4135: retq ;* return
; - com.concurrent.lock.TestSynchronize::inc@24 (line 17)
0x0000000115be4136: mov 0x2a8(%r15),%rax
0x0000000115be413d: xor %r10,%r10
0x0000000115be4140: mov %r10,0x2a8(%r15)
0x0000000115be4147: xor %r10,%r10
0x0000000115be414a: mov %r10,0x2b0(%r15)
0x0000000115be4151: mov %rax,%rsi
0x0000000115be4154: lea 0x20(%rsp),%rax
0x0000000115be4159: mov 0x8(%rax),%rbx
0x0000000115be415d: mov (%rbx),%rdi
0x0000000115be4160: and $0x7,%rdi
0x0000000115be4164: cmp $0x5,%rdi
0x0000000115be4168: je 0x0000000115be4185
0x0000000115be416e: mov (%rax),%rdi
0x0000000115be4171: test %rdi,%rdi
0x0000000115be4174: je 0x0000000115be4185
0x0000000115be417a: lock cmpxchg %rdi,(%rbx)
0x0000000115be417f: jne 0x0000000115be41ca ;*monitorexit
; - com.concurrent.lock.TestSynchronize::inc@21 (line 16)
0x0000000115be4185: mov %rsi,%rax
0x0000000115be4188: jmpq 0x0000000115be4205
0x0000000115be418d: mov %rax,0x8(%rsp)
0x0000000115be4192: movq $0xffffffffffffffff,(%rsp)
0x0000000115be419a: callq 0x0000000115bd5be0 ; OopMap{rsi=Oop off=479}
;*synchronization entry
; - com.concurrent.lock.TestSynchronize::inc@-1 (line 14)
; {runtime_call}
0x0000000115be419f: jmpq 0x0000000115be401b
0x0000000115be41a4: mov %rsi,0x8(%rsp)
0x0000000115be41a9: mov %rdi,(%rsp)
0x0000000115be41ad: callq 0x0000000115bd4060 ; OopMap{rsi=Oop [40]=Oop off=498}
;*monitorenter
; - com.concurrent.lock.TestSynchronize::inc@3 (line 14)
; {runtime_call}
0x0000000115be41b2: jmpq 0x0000000115be40e1
0x0000000115be41b7: lea 0x20(%rsp),%rax
0x0000000115be41bc: mov %rax,(%rsp)
0x0000000115be41c0: callq 0x0000000115bd4420 ; {runtime_call}
0x0000000115be41c5: jmpq 0x0000000115be411a
0x0000000115be41ca: lea 0x20(%rsp),%rax
0x0000000115be41cf: mov %rax,(%rsp)
0x0000000115be41d3: callq 0x0000000115bd4420 ; {runtime_call}
0x0000000115be41d8: jmp 0x0000000115be4185
0x0000000115be41da: nop
0x0000000115be41db: nop
0x0000000115be41dc: mov 0x2a8(%r15),%rax
0x0000000115be41e3: movabs $0x0,%r10
0x0000000115be41ed: mov %r10,0x2a8(%r15)
0x0000000115be41f4: movabs $0x0,%r10
0x0000000115be41fe: mov %r10,0x2b0(%r15)
0x0000000115be4205: add $0x40,%rsp
0x0000000115be4209: pop %rbp
0x0000000115be420a: jmpq 0x0000000115b440e0 ; {runtime_call}
[Exception Handler]
|
其中lock cmpxchg为Compare And Exchange
1
2
3
4
|
CMPXCHG compares its destination (first) operand to the
value in AL, AX or EAX (depending on the size of the instruction).
If they are equal, it copies its source (second) operand into the destination
and sets the zero flag. Otherwise, it clears the zero flag and leaves the destination alone.
|
CMPXCHG is intended to be used for atomic operations in multitasking or multiprocessor environments. To safely update a value in shared memory, for example, you might load the value into EAX, load the updated value into EBX, and then execute the instruction lock cmpxchg [value],ebx. If value has not changed since being loaded, it is updated with your desired new value, and the zero flag is set to let you know it has worked. (The LOCK prefix prevents another processor doing anything in the middle of this operation: it guarantees atomicity.) However, if another processor has modified the value in between your load and your attempted store, the store does not happen, and you are notified of the failure by a cleared zero flag, so you can go round and try again.
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
原文链接:https://liuzhengyang.github.io/2017/03/28/volatileandlock/