@description@
n 个选手参加了一场竞赛,这场竞赛的规则如下:
1.一开始,所有选手两两之间独立进行比赛(没有平局)。
2.主办方将胜者向败者连边形成 n 个点的竞赛图。
3.主办方对这个竞赛图进行强连通分量缩点。
4.每一个强连通分量内部的选手重复步骤 1~3,直到每一个强连通分量内只剩一个选手。
现已知当 i < j 时,选手 i 战胜选手 j 的概率是 p,请计算比赛次数的期望。
Input‘
第一行包含一个整数 n (2 ≤ n ≤ 2000) — 表示玩家个数。
第二行包含两个整数 a 和 b (1 ≤ a < b ≤ 100) — 表示概率 p = a/b。
Output
输出一行一个整数表示期望,对 998244353 取模。
Examples
Input
3
1 2
Output
4
Input
3
4 6
Output
142606340
Input
4
1 2
Output
598946623
Note
第一组样例答案是 4;
第二组样例答案是 27/7;
第三组样例答案是 56/5。
@solution@
可以发现题目给定的过程其实就是个求解子问题的过程,可以使用 dp。
考虑最暴力的解法:枚举每条边的定向,计算概率与此时的强连通分量,进行 dp 的转移。注意可以转移到自己,概率期望 dp 套路(指转移方程移项)即可。
我们发现,如果要求解自己转移到自己的概率,实际上是求 n 个点连成强连通分量的概率 g[n]。
先一步步来,考虑怎么求这个概率,可以使用套路容斥。
即假如 n 个点连不成强连通分量,我们就枚举拓扑序最前面的强连通分量大小 s。
令 f[n][s] 表示 n 个点的图选出 s 个点使得 s 个点与剩下 n-s 个点之间的连边总是 s 个点连过去的概率,则这个时候出现这种局面的概率为 g[s]*f[n][s],最后 g[n] = 1 - ∑g[s]*f[n][s]。
现考虑怎么求 f[n][s],可以做类似背包 dp 的方法。
假如加入的第 n 个点不在 s 个点之中,则从 f[n-1][s] 转移过来,s 个点要全部向点 n 连边,所以概率为 p^s。
假如加入的第 n 个点在 s 个点之中,则从 f[n-1][s-1] 转移过来,点 n 要向除了选出来的 s 个点的其他点连边,所以概率为 (1-p)^(n-s)。
现在回到一开始的 dp,考虑不是转移到自己的时候(即没有形成强连通)。假如缩点后的图为 A1->A2->...->Am,则对应的概率为 g[A1]*f[n][A1] + g[A2]*f[n-A1][A2] + ...,对应的权值为 dp[A1] + dp[A2] + ...。
我们怎么优化这个 dp 呢?不妨令 h[n] 表示将 n 个点划分成若干强连通分量对应的期望(注意不同于 dp 数组的定义,h 只是“划分”,并没有计算划分出来的强连通分量两两之间的贡献)(划分出来的强连通可以只有一个)。
h 的转移可以通过枚举拓扑序最前的强连通(类似于上面的容斥)。dp 的转移与 h 类似,也是枚举拓扑序最前的强连通。
@accepted code@
#include<cstdio>
const int MAXN = 2000;
const int MOD = 998244353;
int pow_mod(int b, int p) {
int ret = 1;
while( p ) {
if( p & 1 ) ret = 1LL*ret*b%MOD;
b = 1LL*b*b%MOD;
p >>= 1;
}
return ret;
}
int n, a, b, p1[MAXN + 5], p2[MAXN + 5];
int f[MAXN + 5][MAXN + 5], g[MAXN + 5];
int dp[MAXN + 5], h[MAXN + 5];
int main() {
scanf("%d%d%d", &n, &a, &b);
p1[0] = 1, p1[1] = 1LL*a*pow_mod(b, MOD-2)%MOD;
p2[0] = 1, p2[1] = (MOD + 1 - p1[1])%MOD;
for(int i=2;i<=n;i++)
p1[i] = 1LL*p1[i-1]*p1[1]%MOD, p2[i] = 1LL*p2[i-1]*p2[1]%MOD;
f[1][1] = 1;
for(int i=2;i<=n;i++) {
f[i][1] = (1LL*f[i-1][1]*p1[1]%MOD + p2[i-1])%MOD;
for(int j=2;j<=i;j++)
f[i][j] = (1LL*f[i-1][j]*p1[j]%MOD + 1LL*f[i-1][j-1]*p2[i-j]%MOD)%MOD;
}
for(int i=1;i<=n;i++) {
g[i] = 1;
for(int j=1;j<i;j++)
g[i] = (g[i] + MOD - 1LL*g[j]*f[i][j]%MOD)%MOD;
}
h[1] = dp[1] = 0;
for(int i=2;i<=n;i++) {
for(int j=1;j<i;j++)
h[i] = (h[i] + 1LL*g[j]*f[i][j]%MOD*(dp[j] + h[i-j])%MOD)%MOD;
dp[i] = 1LL*(h[i] + 1LL*i*(i-1)/2%MOD)*pow_mod((1 + MOD - g[i])%MOD, MOD-2)%MOD;
h[i] = (h[i] + 1LL*g[i]*dp[i]%MOD)%MOD;
}
printf("%d\n", dp[n]);
}
@details@
一开始把边的数量(即原题目中比赛的数量)统计成点的数量,手玩样例还以为是样例的问题。。。
@codeforces - 913F@ Strongly Connected Tournament的更多相关文章
-
【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
-
【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
-
codeforces B. Strongly Connected City(dfs水过)
题意:有横向和纵向的街道,每个街道只有一个方向,垂直的街道相交会产生一个节点,这样每个节点都有两个方向, 问是否每一个节点都可以由其他的节点到达.... 思路:规律没有想到,直接爆搜!每一个节点dfs ...
-
Codeforces913F. Strongly Connected Tournament
n<=2000个人参加比赛,这样比:(这里的序号没按题目的)1.两两比一场,比完连个图,边i->j表示i赢了j.2.连完那个图强联通分量缩起来,强连通分量内继续比,即强连通分量递归进行1. ...
-
Strongly Connected Tournament
题解: 有一个很重要的性质就是 对于一张完全强联通图来说 一定有一个强联通分量入度为0(或者出度为0) 然后就一些计数题的基本套路 https://www.cnblogs.com/onioncyc/p ...
-
PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
-
algorithm@ Strongly Connected Component
Strongly Connected Components A directed graph is strongly connected if there is a path between all ...
-
cf475B Strongly Connected City
B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...
-
Strongly connected(hdu4635(强连通分量))
/* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...
随机推荐
-
Mybatis框架中实现双向一对多关系映射
学习过Hibernate框架的伙伴们很容易就能简单的配置各种映射关系(Hibernate框架的映射关系在我的blogs中也有详细的讲解),但是在Mybatis框架中我们又如何去实现 一对多的关系映射呢 ...
-
【C++沉思录】代理类
1.考虑下面的场景:设计一个容器,包含一组类型不同但相互关联的对象(比如:Animal,Dog,Cat),对象具备多态行为.2.容器一般只能包含一种类型的对象,使用vector<Animal&g ...
-
linux:awk之RS、ORS与FS、OFS
awk之RS.ORS与FS.OFS RS:Record Separator,记录分隔符 ORS:Output Record Separate,输出当前记录分隔符 FS:Field Separato ...
-
js快速打印一个五分制(五颗星)的评分情况
1.函数 下面这个函数实现了在html页面中快速打印一个五分制(五颗星)的评分情况: function getRating(rating) { if(rating > 5 || rating & ...
-
gulp入门学习
一.gulp简介 gulp是一个自动化构建工具.在开发过工程中,能够使用gulp对项目进行自动构建,大大提高工作效率. 二.安装gulp 在安装gulp之前先要确认已经正确安装了node.js,然后在 ...
-
一个基于DpperHelper的t4模板
自定义模板,空的类(目的是和t4生成的模板分开,以免被覆盖) ExtensionDAL <#@ template debug="false" hostspecific=&qu ...
-
grid栅格布局
前面的话 Grid布局方式借鉴了平面装帧设计中的格线系统,将格线运用在屏幕上,而不再是单一的静态页面,可以称之为真正的栅格.本文将详细介绍grid布局 引入 对于Web开发者来说,网页布局一直是个比较 ...
-
ABAP开源项目清单
因为曾经的“SAP Code Exchange”平台已经于2013年倒闭,现在无论在SCN还是网络上都比较难找到一个地方来关注全部的优秀ABAP开源项目. 本文将这些项目的地址和他们的描述列出,以供参 ...
-
B树,B+树,B*树
参考资料 http://www.cnblogs.com/Bob-FD/archive/2012/06/20/2556505.html 第一节.B树.B+树.B*树 1.前言: 动态查找树主要有:二叉查 ...
-
【ABP杂烩】Extensions后缀扩展方法
1.Extensions介绍 扩展方法使你能够向现有类型“添加”方法,而无需创建新的派生类型.重新编译或以其他方式修改原始类型. 扩展方法是一种特殊的静态方法,但可以像扩展类型上的实例方法一样进行调用 ...