HDU 4635 Strongly connected (Tarjan+一点数学分析)

时间:2022-09-22 10:15:46

Strongly connected

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 1   Accepted Submission(s) : 1

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 

Input

The first line of date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.

Output

For each case, you should output the maximum number of the edges you can add.
If the original graph is strongly connected, just output -1.

Sample Input

3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4

Sample Output

Case 1: -1
Case 2: 1
Case 3: 15

Source

2013 Multi-University Training Contest 4
 
题目大意:
给你n个点,m条边,给这个图添加最多的边,但不能让它变成强连通,输出边数(如果原始图已经是强连通图了,就输出-1)
题解:
最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,(这还没去掉已经有了的边m,就是答案),当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,所以首先对于给定的有向图缩点,对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部,所以只要求缩点之后的出度或者入度为0的点中,包含节点数最少的那个点,令它为一个部,其它所有点加起来做另一个部,就可以得到最多边数的图了
来源:http://www.cnblogs.com/jackge/p/3231767.html
看了题解,豁然开朗。。。强啊!!!
#include <bits/stdc++.h>
using namespace std;
const int N=+;
int dfn[N],low[N],team[N],num[N],in[N],out[N];
bool instack[N];
int n,T,m,index,team_num;
vector<int> mp[N];
stack<int> S;
void Tarjan(int u)
{
low[u]=dfn[u]=++index;
S.push(u);
instack[u]=;
for(int i=;i<mp[u].size();i++)
{
int v=mp[u][i];
if (!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (instack[v]) low[u]=min(low[u],dfn[v]);
}
if (dfn[u]==low[u])
{
team_num++;
while()
{
int v=S.top(); S.pop();
instack[v]=;
team[v]=team_num; // v点是第几组
num[team_num]++; //第i组的点个数
if (v==u) break;
}
}
}
void dfs()
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
memset(team,,sizeof(team));
memset(num,,sizeof(num));
team_num=;
index=;
for(int i=;i<=n;i++)
if (!dfn[i]) Tarjan(i);
}
int main()
{
scanf("%d",&T);
for(int cas=;cas<=T;cas++)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) mp[i].clear();
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
mp[x].push_back(y);
}
dfs(); //缩点,求出各个组的点数
printf("Case %d: ",cas);
for(int i=;i<=team_num;i++) in[i]=out[i]=;
for(int i=;i<=n;i++)
for(int j=;j<mp[i].size();j++)
{
if (team[i]!=team[mp[i][j]])
{
in[team[mp[i][j]]]++;
out[team[i]]++;
}
}
//统计入度数和出度数
int minn=;
for(int i=;i<=team_num;i++)
if (in[i]== || out[i]==) minn=min(minn,num[i]);
//求出入度=0或者出度=0的点数最小的组
if (team_num==) printf("-1\n");
else printf("%lld\n",(long long)n*n-n-(long long)minn*(n-minn)-m);
}
return ;
}

HDU 4635 Strongly connected (Tarjan+一点数学分析)的更多相关文章

  1. hdu 4635 Strongly connected&lpar;Tarjan&rpar;

    做完后,看了解题报告,思路是一样的.我就直接粘过来吧 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部 ...

  2. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  3. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  5. HDU 4635 Strongly connected&lpar;强连通&rpar;经典

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. hdu 4635 Strongly connected (tarjan)

    题意:给一个n个顶点m条弧的简单有向图(无环无重边),求最多能够加入多少条弧使得加入后的有向图仍为简单有向图且不是一个强连通图.假设给的简单有向图本来就是强连通图,那么输出-1. 分析: 1.用tar ...

  7. hdu 4635 Strongly connected

    http://acm.hdu.edu.cn/showproblem.php?pid=4635 我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值 表示是由多少个点 ...

  8. HDU 4635 Strongly connected ——(强连通分量)

    好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设 ...

  9. hdu 4635&Tab;Strongly connected(强连通)

    考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...

随机推荐

  1. Ubuntu(Linux系统)虚拟机工具vmtools详细说明

    安装虚拟机工具vmtools大概步骤如下: 个人总结步骤: 第一步:点击虚拟机软件的vm工具栏选项,选择install vmware tools(安装VMware Tools) 第二步:桌面会出现一个 ...

  2. PHP的命名空间 与类是自动加载

    namespace 假设如果不使用namespace,那么每个类在一个项目中的名字就必须是固定的.因为php在new的时候不管是调用autoload还是调用已加载过的类,都存在一个类名对应的文件.所以 ...

  3. knn原理与实践

    knn法是一种基本分类与回归方法 应用:knn算法不仅可以用于分类,还可以用于回归.. 1.文本分类:文本分类主要应用于信息检索,机器翻译,自动文摘,信息过滤,邮件分类等任务. 2.可以使用knn算法 ...

  4. Spark Streaming揭秘 Day35 Spark core思考

    Spark Streaming揭秘 Day35 Spark core思考 Spark上的子框架,都是后来加上去的.都是在Spark core上完成的,所有框架一切的实现最终还是由Spark core来 ...

  5. HDU 3572 最大流

    [题意]有n个任务,每个任务必须开始于第Si天之后(包括Si),结束于第Ei天之前(包括Ei),每个任务持续的时间为Pi,现在有m台机器,每台每天只能专注做其中一件任务,每个任务做的时间可以不连续.问 ...

  6. css控制图片变灰色,彩色

    <A href="链接地址"><IMG src="p1.jpg" border="0"></A> &lt ...

  7. QT creator中使用opencv采集摄像头信息

    之前在QT creator上成功编译了opencv,由于课题需要,需要采集摄像头的信息.故搜集了网上的一些资料,依葫芦画瓢的照着做了一下,终于简单的成功采集了信息. 打开QTcreator,新建一个w ...

  8. delphi 网页提交按钮执行点击事件

    遍历即可实现,下列代码仅供参考: var i: integer; T: OleVariant; begin T := WebBrowser1.Document; do begin if T.all.i ...

  9. Linux系统诊断必备技能之二:tcpdump抓包工具详解

    一.简述 TcpDump可以将网络中传送的数据包完全截获下来提供分析.它支持针对网络层.协议.主机.网络或端口的过滤,并提供and.or.not等逻辑语句来帮助你去掉无用的信息. Linux作为网络服 ...

  10. jQuery使用(十):jQuery实例方法之位置、坐标、图形(BOM)

    offset() position() scrollTop().scrollLeft width().height() innerWidth().outerWidth().innerHeight(). ...