k-center问题-学习

时间:2022-09-19 10:47:40

k-center问题:

In graph theory, the metric k-center or metric facility location problem is a combinatorial optimization problem studied in theoretical computer science. Given n cities with specified distances, one wants to build k warehouses in different cities and minimize the maximum distance of a city to a warehouse. In graph theory this means finding a set of k vertices for which the largest distance of any point to its closest vertex in the k-set is minimum. The vertices must be in a metric space, providing a complete graph that satisfies the triangle inequality.

complete graph

k-center问题-学习

G7, a complete graph with 7 vertices

k-center问题-学习

The k-Center Clustering problem can also be defined on a complete undirected graph G = (V, E) as follows:

Given a complete undirected graph G = (V, E) with distances d(vi, vj) ∈ N satisfying the triangle inequality, find a subset CV with |C| = k while minimizing:

k-center问题-学习

In a complete undirected graph G = (V, E), if we sort the edges in nondecreasing order of the distances: d(e1) ≤ d(e2) ≤ … ≤ d(em) and let Gi = (V, Ei), where Ei = {e1, e2, …, ei}. The k-center problem is equivalent to finding the smallest index i such that Gi has a dominating set of size at most k.

Dominating set:

In graph theory, a dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G.

k-center问题-学习

Dominating sets (red vertices)

The dominating set problem concerns testing whether γ(G) ≤ K for a given graph G and input K; it is a classical NP-complete decision problem in computational complexity theory.Therefore it is believed that there may be no efficient algorithm that finds a smallest dominating set for all graphs, although there are efficient approximation algorithms, as well as both efficient and exact algorithms for certain graph classes.

Figures (a)–(c) on the right show three examples of dominating sets for a graph. In each example, each white vertex is adjacent to at least one red vertex, and it is said that the white vertex is dominated by the red vertex. The domination number of this graph is 2: the examples (b) and (c) show that there is a dominating set with 2 vertices, and it can be checked that there is no dominating set with only 1 vertex for this graph.

For Dominator in control flow graphs, see Dominator (graph theory).

来源于网络

k-center问题-学习的更多相关文章

  1. K线图学习

    本博文(适合入门的股民朋友)内容来自网络,股市有风险,入市需谨慎 一.起源 K线图(Candlestick Charts)又称蜡烛图.日本线.阴阳线.棒线等,常用说法是“K线”,起源于日本十八世纪德川 ...

  2. bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]

    1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...

  3. 机器学习2—K近邻算法学习笔记

    Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...

  4. The Preliminary Contest for ICPC Asia Xuzhou 2019 K. Center

    这题对于能加入最多边缘点的center点,这个点就是最优的center ,对于center点,总共是n^2的,顶多也就1e6,所以直接双重循环就行了, 然后map<pair,set >映射 ...

  5. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

  6. 集成学习之Adaboost算法原理小结

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boostin ...

  7. 小K的H5之旅-实战篇(一)

    一.前言 本K在经过两个星期的html和css学习之后,第一次去尝试完成一个网站主页的制作.在四天之后,本K也终于完成了杰瑞教育主页的html和css部分,至于部分涉及js的部分,因为本K还没有学习过 ...

  8. 集成学习值Adaboost算法原理和代码小结&lpar;转载&rpar;

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...

  9. 4&period; 集成学习(Ensemble Learning)Adaboost

    1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...

  10. 何时开始phonics学习及配套阅读训练zz

    引子:自从11月份俱乐部第一批孩子开始英文阅读,到现在三.四个月的时间过去了.很多孩子从不知道怎么读绘本甚至排斥英语,到现在能很投入地看原版书, 有些甚至主动地去寻找拼读规律.我家小宝目前也从前期的阅 ...

随机推荐

  1. iOS的QuickTime Plugin

    当UIWebView播放视频时,可以看到view hierarchy里有FigPluginView的身影.这个类来自于QuickTime Plugin,plugin的路径为: /Application ...

  2. &lbrack;转&rsqb;Java 8:不要再用循环了

    以下内容为转载,没有在jdk8中测试,具体业务场景是否存在BUG或使用需要注意的地方有待测试. ------------------分割线---------------------- 正如我之前所写的 ...

  3. android学习笔记21——消息提示Toast

    消息提示可细分为两种:大量消息提示——当程序有大量图片.信息需要展示时,采用对话框消息提示: 小量消息提示——当程序只有少量信息需要呈现给用户时,采用轻量级的对话框——Toast; Toast ==& ...

  4. C&num;:读取配置文件

    以下代码演示如何读取配置文件---------------------Factory.cs----------------------------using System;using System.C ...

  5. guozhongCrawler的是一个无须配置、便于二次开发

    guozhongCrawler的是一个无须配置.便于二次开发的爬虫开源框架,它提供简单灵活的API,只需少量代码即可实现一个爬虫.模块化设计完全 面向业务提供接口,功能覆盖整个爬虫的生命周期(链接提取 ...

  6. oracle 表复制

    1. 复制表结构及其数据: create table table_name_new as select * from table_name_old 2. 只复制表结构: ; 或者 create tab ...

  7. PortMon&lpar;电脑开放端口检查工具&rpar; 3&period;03 免费绿色版

    软件名称: PortMon(电脑开放端口检查工具) 3.03 免费绿色版 软件语言: 英文 授权方式: 免费软件 运行环境: Win7 / Vista / Win2003 / WinXP / Win2 ...

  8. qml 中 使用 shader

    使用绘制工具如Photoshop .Flash已经可以创建许多效果非常绚丽的图像.动画等. Qt/QML 的努力其实是在这些工具发展的后面, 因此很多效果在Qt中无法实现. 不得不佩服Qt小组的才智, ...

  9. Notepad&plus;&plus; V6&period;9&period;0 中文绿色便携版

    软件名称: Notepad++软件语言: 简体中文授权方式: 免费软件运行环境: Win 32位/64位软件大小: 3.4MB图片预览: 软件简介:Notepad中文版是一款非常有特色的编辑器,是开源 ...

  10. A - 娜娜梦游仙境系列——诡异的钢琴

    A - 娜娜梦游仙境系列——诡异的钢琴 Time Limit: 2000/1000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Othe ...