在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性来获取,但是当我们利用一些第三方的库来构造神经网络的layer时,存在一种情况:就是我们自己无法定义该层的变量,因为是自动进行定义的。
比如用tensorflow的slim库时:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
<span style = "font-size:14px;" > def resnet_stack(images, output_shape, hparams, scope = None ):< / span>
<span style = "font-size:14px;" > """Create a resnet style transfer block.</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> Args:</span>
<span style="font-size:14px;"> images: [batch-size, height, width, channels] image tensor to feed as input</span>
<span style="font-size:14px;"> output_shape: output image shape in form [height, width, channels]</span>
<span style="font-size:14px;"> hparams: hparams objects</span>
<span style="font-size:14px;"> scope: Variable scope</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> Returns:</span>
<span style="font-size:14px;"> Images after processing with resnet blocks.</span>
<span style="font-size:14px;"> """ < / span>
<span style = "font-size:14px;" > end_points = {}< / span>
<span style = "font-size:14px;" > if hparams.noise_channel:< / span>
<span style = "font-size:14px;" > # separate the noise for visualization</span>
<span style = "font-size:14px;" > end_points[ 'noise' ] = images[:, :, :, - 1 ]< / span>
<span style = "font-size:14px;" > assert images.shape.as_list()[ 1 : 3 ] = = output_shape[ 0 : 2 ]< / span>
<span style = "font-size:14px;" >< / span>
<span style = "font-size:14px;" > with tf.variable_scope(scope, 'resnet_style_transfer' , [images]):< / span>
<span style = "font-size:14px;" > with slim.arg_scope(< / span>
<span style = "font-size:14px;" > [slim.conv2d],< / span>
<span style = "font-size:14px;" > normalizer_fn = slim.batch_norm,< / span>
<span style = "font-size:14px;" > kernel_size = [hparams.generator_kernel_size] * 2 ,< / span>
<span style = "font-size:14px;" > stride = 1 ):< / span>
<span style = "font-size:14px;" > net = slim.conv2d(< / span>
<span style = "font-size:14px;" > images,< / span>
<span style = "font-size:14px;" > hparams.resnet_filters,< / span>
<span style = "font-size:14px;" > normalizer_fn = None ,< / span>
<span style = "font-size:14px;" > activation_fn = tf.nn.relu)< / span>
<span style = "font-size:14px;" > for block in range (hparams.resnet_blocks):< / span>
<span style = "font-size:14px;" > net = resnet_block(net, hparams)< / span>
<span style = "font-size:14px;" > end_points[ 'resnet_block_{}' . format (block)] = net< / span>
<span style = "font-size:14px;" >< / span>
<span style = "font-size:14px;" > net = slim.conv2d(< / span>
<span style = "font-size:14px;" > net,< / span>
<span style = "font-size:14px;" > output_shape[ - 1 ],< / span>
<span style = "font-size:14px;" > kernel_size = [ 1 , 1 ],< / span>
<span style = "font-size:14px;" > normalizer_fn = None ,< / span>
<span style = "font-size:14px;" > activation_fn = tf.nn.tanh,< / span>
<span style = "font-size:14px;" > scope = 'conv_out' )< / span>
<span style = "font-size:14px;" > end_points[ 'transferred_images' ] = net< / span>
<span style = "font-size:14px;" > return net, end_points< / span>
|
我们希望获取第一个卷积层的权重weight,该怎么办呢??
在训练时,这些可训练的变量会被tensorflow保存在 tf.trainable_variables() 中,于是我们就可以通过打印 tf.trainable_variables() 来获取该卷积层的名称(或者你也可以自己根据scope来看出来该变量的name ),然后利用tf.get_default_grap().get_tensor_by_name 来获取该变量。
举个简单的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
<span style = "font-size:14px;" > import tensorflow as tf< / span>
<span style = "font-size:14px;" >with tf.variable_scope( "generate" ):< / span>
<span style = "font-size:14px;" > with tf.variable_scope( "resnet_stack" ):< / span>
<span style = "font-size:14px;" > #简单起见,这里没有用第三方库来说明,</span>
<span style = "font-size:14px;" > bias = tf.Variable( 0.0 ,name = "bias" )< / span>
<span style = "font-size:14px;" > weight = tf.Variable( 0.0 ,name = "weight" )< / span>
<span style = "font-size:14px;" >< / span>
<span style = "font-size:14px;" > for tv in tf.trainable_variables():< / span>
<span style = "font-size:14px;" > print (tv.name)< / span>
<span style = "font-size:14px;" >< / span>
<span style = "font-size:14px;" >b = tf.get_default_graph().get_tensor_by_name( "generate/resnet_stack/bias:0" )< / span>
<span style = "font-size:14px;" >w = tf.get_default_graph().get_tensor_by_name( "generate/resnet_stack/weight:0" )< / span>
<span style = "font-size:14px;" >< / span>
<span style = "font-size:14px;" >with tf.Session() as sess:< / span>
<span style = "font-size:14px;" > tf.global_variables_initializer().run()< / span>
<span style = "font-size:14px;" > print (sess.run(b))< / span>
<span style = "font-size:14px;" > print (sess.run(w))
< / span>
|
结果如下:
以上这篇tensorflow 获取变量&打印权值的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/cassiePython/article/details/79179044