HDU 1069 Monkey and Banana (DP)

时间:2022-09-17 10:37:53
Monkey and Banana

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, 
representing the number of different blocks in the following data set. The maximum value for n is 30. 
Each of the next n lines contains three integers representing the values xi, yi and zi. 
Input is terminated by a value of zero (0) for n. 
 

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 
 

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 

思路:首先,每个方块的三个维度一共有3*2=6中组合,题目说最多有30个方块,所以数组应该开180以上。思路是DP数组的每个元素存的是以此方块为底的最高能摆的高度,从最顶端那个开始填表,顺便记录下最大值,最后输出最大值即可。

 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAX 200 struct x
{
int x;
int y;
int z;
}DP[MAX]; int comp(const void * a,const void * b);
int main(void)
{
int n,max,box,x,y,z,count;
count = ; while(scanf("%d",&n) && n)
{
count ++;
for(int i = ;i < * n;i ++)
{
scanf("%d%d%d",&x,&y,&z);
DP[i].x = x;
DP[i].y = y;
DP[i].z = z; i ++;
DP[i].x = x;
DP[i].y = z;
DP[i].z = y; i ++;
DP[i].x = z;
DP[i].y = y;
DP[i].z = x; i ++;
DP[i].x = z;
DP[i].y = x;
DP[i].z = y; i ++;
DP[i].x = y;
DP[i].y = x;
DP[i].z = z; i ++;
DP[i].x = y;
DP[i].y = z;
DP[i].z = x;
}
qsort(DP, * n,sizeof(struct x),comp); max = DP[ * n - ].z;
for(int i = * n - ;i >= ;i --)
{
box = ;
for(int j = i + ;j < * n - ;j ++)
if(DP[i].x > DP[j].x && DP[i].y > DP[j].y && box < DP[j].z)
box = DP[j].z;
DP[i].z += box;
max = max > DP[i].z ? max : DP[i].z;
}
printf("Case %d: maximum height = %d\n",count,max);
} return ;
} int comp(const void * a,const void * b)
{
return -(((struct x *)a) -> x - ((struct x *)b) -> x);
}
 

HDU 1069 Monkey and Banana (DP)的更多相关文章

  1. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  2. HDU 1069 Monkey and Banana&lpar;DP 长方体堆放问题&rpar;

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  3. HDU 1069 Monkey and Banana DP LIS变形题

    http://acm.hdu.edu.cn/showproblem.php?pid=1069 意思就是给定n种箱子,每种箱子都有无限个,每种箱子都是有三个参数(x, y, z)来确定. 你可以选任意两 ...

  4. HDU 1069 Monkey and Banana DP LIS

    http://acm.hdu.edu.cn/showproblem.php?pid=1069 题目大意 一群研究员在研究猴子的智商(T T禽兽啊,欺负猴子!!!),他们决定在房顶放一串香蕉,并且给猴子 ...

  5. HDU 1069 monkey an banana DP LIS

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64uDescription 一组研究人员正在 ...

  6. HDU 1069 Monkey and Banana &sol; ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  7. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  8. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  9. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

随机推荐

  1. windows 下ssh 客户端

    今天用 xshell 和 bitvise ssh 在 windows 登录SSH ,发现 vi 一些中文内容的文件会出现乱码,配置无效,在网上找到一款不会中文乱码的SSH客户端 MobaXterm , ...

  2. poj 2985 The k-th Largest Group 树状数组求第K大

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8353   Accepted ...

  3. &lt&semi;hash命令:显示、添加或清除哈希表&gt&semi;

    linux系统下的hash指令: 说明:linux系统下会有一个hash表,当你刚开机时这个hash表为空,每当你执行过一条命令时,hash表会记录下这条命令的路径,就相当于缓存一样.第一次执行命令s ...

  4. 2014年度辛星html教程夏季版第四节

    我们前面也涉及了HTML中的一些东西,接下来我们要涉及到图像了,如果没有图像,即使文字的样式再多,再复杂,终归还是单调的,我们就需要用图片来给我们的网页增加更多的表现形式. ************* ...

  5. Delphi XE5 附破解补丁

    Embarcadero RAD Studio XE5 Version 19.0.13476.4176: http://altd.embarcadero.com/download/radstudio/x ...

  6. MEAN栈开发

    Nodejs之MEAN栈开发(二)----视图与模型 2016-06-02 08:30 by stoneniqiu, 92 阅读, 2 评论, 收藏, 编辑 上一节做了对Express做了简单的介绍, ...

  7. SDK does not contain any platforms&period; error &lpar;android&rpar;

    By default sdk was installed under the C:\Users\<user_name>\AppData\Local\Android\sdk\ directo ...

  8. Java课程设计——猜数游戏(201521123111 陈伟泽)

    Java课程设计--猜数游戏(201521123111 陈伟泽) 1.团队课程设计博客链接 博客作业--猜数游戏 2.个人负责模块或任务说明 Answer:一些基础界面的构造,排行榜的构造,用文件录入 ...

  9. sscanf和正则表达式

    sscanf() - 从一个字符串中读进与指定格式相符的数据.      函数原型: Int sscanf( string str, string fmt, mixed var1, mixed var ...

  10. android&colon;clipChildren属性,子布局超出父布局;

    是否允许子View超出父View的范围,Boolean型true .false ,默认true不允许: android:clipChildren="true":如下 android ...