HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)
Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
Http
HDU:https://vjudge.net/problem/HDU-1069
ZOJ:https://vjudge.net/problem/ZOJ-1093
Source
最长路径
题目大意
给出若干个三维块,每一种三维块都有无数个。一个块能叠在另一块上当且仅当其边长能严格小于那一块。现在求能叠起来的最高高度
解决思路
对于每一个块,我们把其拆成三个二维矩形,并附带一个权值,矩形的长和宽分别是块的两个棱长,而附带的权值就是剩余的棱长。然后我们枚举每一对矩形i,j,看一看j是否能叠在i上,如果可以,则连边i->j,权值就是矩形j的附加权值。
相信你已经看出来了,这里我们要求的就是这个图中的最长路。
但是因为起点没有固定,所以我们建立一个超级起点0,连上所有的矩形,边权就是矩形的附加权值。
话说本来想用本题练一练Dijkstra+Heap的,但后来发现求最长路时并不满足先出的一定不再修改(为什么呢?看看样例一你就明白了),于是变成了Dijkstra+Heap+允许重入队,就等于spfa+Heap了。。。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxN=40*4;
const int maxM=maxN*maxN*2;
const int inf=2147483647;
class Queue_Data//优先队列中的元素,u是点,dist是权值
{
public:
int u,dist;
};
bool operator < (Queue_Data A,Queue_Data B)
{
return A.dist<B.dist;
}
class Edge
{
public:
int u,v,w;
};
int n,m;
int cnt;
int Node[maxN];
int Head[maxN];
int Next[maxM];
Edge E[maxM];
int Dist[maxN];
bool vis[maxN];
int Cube[maxN][4];
priority_queue<Queue_Data> Q;//用优先队列模拟堆
void Add_Edge(int u,int v,int w);
int main()
{
int cas=0;
while (cin>>n)
{
if (n==0)
break;
cnt=0;
memset(Head,-1,sizeof(Head));
for (int i=1;i<=n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if (b<a)//为了方便后面比较,我们这里保证a<=b<=c
swap(a,b);
if (c<a)
swap(a,c);
if (c<b)
swap(b,c);
Cube[i][1]=a;//Cube[i][1]和Cube[i][2]分别是矩形的长和宽,并且保证Cube[i][1]<=Cube[i][2],Cube[i][3]就是矩形的附加权值(即高度)
Cube[i][2]=b;
Cube[i][3]=c;
Cube[i+n][1]=b;
Cube[i+n][2]=c;
Cube[i+n][3]=a;
Cube[i+n+n][1]=a;
Cube[i+n+n][2]=c;
Cube[i+n+n][3]=b;
}
/*
for (int i=1;i<=n*3;i++)
cout<<Cube[i][1]<<" "<<Cube[i][2]<<endl;
cout<<endl;
//*/
for (int i=1;i<=n*3;i++)
for (int j=1;j<=n*3;j++)
if ((Cube[i][1]>Cube[j][1])&&(Cube[i][2]>Cube[j][2]))//因为上面已经保证了Cube[i][1]<=Cube[i][2]所以这里简化了判断
Add_Edge(i,j,Cube[j][3]);
for (int i=1;i<=n*3;i++)//因为不知道起点,所以都连上超级起点0,或者你也可以把所有点的初值都置好然后全部丢入优先队列
Add_Edge(0,i,Cube[i][3]);
/*
for (int i=1;i<=cnt;i++)
cout<<E[i].u<<" "<<E[i].v<<" "<<E[i].w<<endl;
//*/
memset(vis,0,sizeof(vis));
memset(Dist,0,sizeof(Dist));
Q.push((Queue_Data){0,0});
int Ans=0;
do//求解最长路
{
int u=Q.top().u;
int di=Q.top().dist;
Q.pop();
if (vis[u]==1)
continue;
vis[u]=1;
//cout<<"take:"<<u<<" "<<di<<endl;
Ans=max(Ans,di);//一边求就一边更新答案
for (int i=Head[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if (di+E[i].w>Dist[v])
{
vis[v]=0;//这里要允许重入队
Dist[v]=di+E[i].w;
Q.push((Queue_Data){v,Dist[v]});
}
}
}
while (!Q.empty());
/*
for (int i=1;i<=n*3;i++)
cout<<Dist[i]<<" ";
cout<<endl;
//*/
printf("Case %d: maximum height = %d\n",++cas,Ans);//注意输出格式
}
return 0;
}
void Add_Edge(int u,int v,int w)
{
cnt++;
Next[cnt]=Head[u];
Head[u]=cnt;
E[cnt].u=u;
E[cnt].v=v;
E[cnt].w=w;
return;
}
为什么这一道题和上一题一样也在[kuangbin带你飞]的专题十二 基础DP1里?我很迷茫……
可能最短路径硬扯也能说是动态规划思想吧
HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)的更多相关文章
-
ZOJ 1093 Monkey and Banana (LIS)解题报告
ZOJ 1093 Monkey and Banana (LIS)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
-
随手练——ZOJ 1093 Monkey and Banana(动态规划)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=93 一堆科学家研究猩猩的智商,给他M种长方体,每种N个. 然后,将一个 ...
-
HDU 1069 Monkey and Banana(二维偏序LIS的应用)
---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
-
HDU 1069 Monkey and Banana (DP)
Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
-
(最大上升子序列)Monkey and Banana -- hdu -- 1069
http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit:1000MS Memory L ...
-
hdu 1069 动规 Monkey and Banana
Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
-
HDU 1069—— Monkey and Banana——————【dp】
Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
-
HDU 1069 Monkey and Banana dp 题解
HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...
-
HDU 1069 dp最长递增子序列
B - Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I6 ...
随机推荐
-
Windows Server 2012 克隆修改SID
更改SID后蓝屏\黑屏: 环境:Windows Server 2012 R2 目的:克隆出来的系统的SID都是一样,所以想修改各个系统的SID号 现象:克隆出来的系统的SID都是一样,所以想修改各个系 ...
-
使用百度UMeditor富文本编辑器,修改自定义图片上传,修改源码
富文本编辑器,不多说了,这个大家应该都用到过,至于用到的什么版本,那就分很多种 CKEditor:很早以前叫FCK,那个时候也用过,现在改名了,比较流行的一个插件,国外很多公司在用 UEDITOR:百 ...
-
Solr auto commit 配置
为了解决写索引时频繁提交带来的效率问题,考虑使用自动提交. 在solrconfig.xml中增加以下代码: <updateHandler class="solr.DirectUpdat ...
-
MAC的OS X10.10更新以后进入用户界面就死机
我用的是搜狗输入法,所以把搜狗卸载就好了.(注意是卸载,不是单纯的从输入源里移除) 下载一个搜狗输入法的DMG,打开后选择卸载搜狗输入法. 转自: http://zhidao.baidu.com/qu ...
-
Linux下安装firefox最新版
Linux刚安装好的时候,默认是火狐浏览器并且版本比较低,我的系统是CentOS,火狐版本号才31,用yum安装的话版本也不是最新,只要从官方网站下载最新版安装就可以了,方法如下: 首先去火狐主页,中 ...
-
row_number()over(order by id) SQL顺序排列
select *,row_number()over(order by id) as number_id from [dbo].tb_pccw20140213
-
linux定时器HZ和Jiffies
1.linux HZ Linux核心几个重要跟时间有关的名词或变数,以下将介绍HZ.tick与jiffies. HZ Linux核心每隔固定周期会发出timer interrupt (IRQ 0),H ...
-
gcc向待编译源文件传入参数的方法
gcc有两种方法向待编译源文件传入参数 第一种 利用–Dmacro=name 编译选项,详见gcc -D选项 第二种 利用链接脚本(*.lds)传入参数,类似于ADS的编译器参数可以被待编译源文件调用 ...
-
[LeetCode] 148. Sort List 解题思路
Sort a linked list in O(n log n) time using constant space complexity. 问题:对一个单列表排序,要求时间复杂度为 O(n*logn ...
-
Android基础之CountDownTimer 倒计时类
app常用的60s倒计时计时功能: private static final int TIME_LIMIT = 60; private void initView() { // 相关控件 mResen ...