在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick。接下来,我们将使用CIFAR-10数据集进行训练。
CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张。CIFAR-10如同其名字,一共标注为10类,每一类图片6000张。
本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧:
- 对weights进行了L2的正则化
- 对图片进行了翻转、随机剪切等数据增强,制造了更多样本
- 在每个卷积-最大池化层后面使用了LRN(局部响应归一化层),增强了模型的泛化能力
首先需要下载Tensorflow models Tensorflow models,以便使用其中的CIFAR-10数据的类.进入目录models/tutorials/image/cifar10目录,执行以下代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
import cifar10
import cifar10_input
import tensorflow as tf
import numpy as np
import time
# 定义batch_size, 训练轮数max_steps, 以及下载CIFAR-10数据的默认路径
max_steps = 3000
batch_size = 128
data_dir = 'E:\\tmp\cifar10_data\cifar-10-batches-bin'
# 定义初始化weight的函数,定义的同时,对weight加一个L2 loss,放在集'losses'中
def variable_with_weight_loss(shape, stddev, w1):
var = tf.Variable(tf.truncated_normal(shape, stddev = stddev))
if w1 is not None :
weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name = 'weight_loss' )
tf.add_to_collection( 'losses' , weight_loss)
return var
# 使用cifar10类下载数据集,并解压、展开到其默认位置
#cifar10.maybe_download_and_extract()
# 在使用cifar10_input类中的distorted_inputs函数产生训练需要使用的数据。需要注意的是,返回的是已经封装好的tensor,
# 且对数据进行了Data Augmentation(水平翻转、随机剪切、设置随机亮度和对比度、对数据进行标准化)
images_train, labels_train = cifar10_input.distorted_inputs(data_dir = data_dir, batch_size = batch_size)
# 再使用cifar10_input.inputs函数生成测试数据,这里不需要进行太多处理
images_test, labels_test = cifar10_input.inputs(eval_data = True ,
data_dir = data_dir,
batch_size = batch_size)
# 创建数据的placeholder
image_holder = tf.placeholder(tf.float32, [batch_size, 24 , 24 , 3 ])
label_holder = tf.placeholder(tf.int32, [batch_size])
# 创建第一个卷积层
weight1 = variable_with_weight_loss(shape = [ 5 , 5 , 3 , 64 ], stddev = 5e - 2 ,
w1 = 0.0 )
kernel1 = tf.nn.conv2d(image_holder, weight1, strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' )
bias1 = tf.Variable(tf.constant( 0.0 , shape = [ 64 ]))
conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
pool1 = tf.nn.max_pool(conv1, ksize = [ 1 , 3 , 3 , 1 ], strides = [ 1 , 2 , 2 , 1 ],
padding = 'SAME' )
# LRN层对ReLU会比较有用,但不适合Sigmoid这种有固定边界并且能抑制过大值的激活函数
norm1 = tf.nn.lrn(pool1, 4 , bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 )
# 创建第二个卷积层
weight2 = variable_with_weight_loss(shape = [ 5 , 5 , 64 , 64 ], stddev = 5e - 2 ,
w1 = 0.0 )
kernel2 = tf.nn.conv2d(norm1, weight2, strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' )
bias2 = tf.Variable(tf.constant( 0.1 , shape = [ 64 ]))
conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
norm2 = tf.nn.lrn(conv2, 4 , bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 )
pool2 = tf.nn.max_pool(norm2, ksize = [ 1 , 3 , 3 , 1 ], strides = [ 1 , 2 , 2 , 1 ],
padding = 'SAME' )
# 使用一个全连接层
reshape = tf.reshape(pool2, [batch_size, - 1 ])
dim = reshape.get_shape()[ 1 ].value
weight3 = variable_with_weight_loss(shape = [dim, 384 ], stddev = 0.04 , w1 = 0.004 )
bias3 = tf.Variable(tf.constant( 0.1 , shape = [ 384 ]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)
# 再使用一个全连接层,隐含节点数下降了一半,只有192个,其他的超参数保持不变
weight4 = variable_with_weight_loss(shape = [ 384 , 192 ], stddev = 0.04 , w1 = 0.004 )
bias4 = tf.Variable(tf.constant( 0.1 , shape = [ 192 ]))
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)
# 最后一层,将softmax放在了计算loss部分
weight5 = variable_with_weight_loss(shape = [ 192 , 10 ], stddev = 1 / 192.0 , w1 = 0.0 )
bias5 = tf.Variable(tf.constant( 0.0 , shape = [ 10 ]))
logits = tf.add(tf.matmul(local4, weight5), bias5)
# 定义loss
def loss(logits, labels):
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels,
name = 'cross_entropy_per_example' )
cross_entropy_mean = tf.reduce_mean(cross_entropy, name = 'cross_entropy' )
tf.add_to_collection( 'losses' , cross_entropy_mean)
return tf.add_n(tf.get_collection( 'losses' ), name = 'total_loss' )
# 获取最终的loss
loss = loss(logits, label_holder)
# 优化器
train_op = tf.train.AdamOptimizer( 1e - 3 ).minimize(loss)
# 使用tf.nn.in_top_k函数求输出结果中top k的准确率,默认使用top 1,也就是输出分数最高的那一类的准确率
top_k_op = tf.nn.in_top_k(logits, label_holder, 1 )
# 使用tf.InteractiveSession创建默认的session,接着初始化全部模型参数
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 启动图片数据增强线程
tf.train.start_queue_runners()
# 正式开始训练
for step in range (max_steps):
start_time = time.time()
image_batch, label_batch = sess.run([images_train, labels_train])
_, loss_value = sess.run([train_op, loss], feed_dict = {image_holder: image_batch, label_holder: label_batch})
duration = time.time() - start_time
if step % 10 = = 0 :
example_per_sec = batch_size / duration
sec_per_batch = float (duration)
format_str = 'step %d, loss=%.2f ,%.1f examples/sec, %.3f sec/batch'
print (format_str % (step, loss_value, example_per_sec, sec_per_batch))
num_examples = 10000
import math
num_iter = int (math.ceil(num_examples / batch_size))
true_count = 0
total_sample_count = num_iter * batch_size
step = 0
while step < num_iter:
image_batch, label_batch = sess.run([images_test, labels_test])
predictions = sess.run([top_k_op], feed_dict = {image_holder: image_batch, label_holder: label_holder})
true_count + = np. sum (predictions)
step + = 1
precision = true_count / total_sample_count
print ( 'precision @ 1 = %.3f' % precision)
|
运行结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/XJY104165/article/details/78563081