Sky Soldiers
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 559 Accepted Submission(s): 181
of the army can analysis the probability of landing in a certain place through landing history records. To make it simple, the statistician suggests that these sky soldiers will land on finite discrete points of a straight line.
This mission plans to place m provisions for the soldiers on the line for landing. These soldiers will be informed the direction of the nearest provision point by a special device after landing, and then walk to the point. The manager of this mission is asking
you for help: to determine m points for provisions so that the expected sum of walking distance should be minimized. You can put provisions on any point of the landing line.
The following k lines contain descriptions of landing parameters for the soldiers numbered from 1 to k. Each description consists of an integer L followed by L pairs of (x, p), which indicates that the probability of the soldier's landing on integer coordination
x is p. It is guaranteed that all the p values are positive real numbers, and the sum of p in a single line is exactly 1. The same x may appear more than once on the same line which you should simply add up all the probability p of the pairs with equal x.
The number of places on which all the soldiers could land is no more than 1000 and it can not be less than m.
The input ends with k=m=0.
2 1
2 0 0.5 1 0.5
2 1 0.1 3 0.9
0 0
2.30
题意:
n个伞兵。落地后。每一个伞兵可能会落在若干个点上点都在x轴上。落在每一个点都有一个概率。如今在x轴上建立m个基地,每一个伞兵走到近期的基地。确定基地建立的地点使得全部伞兵所走的路程总和的期望最小。
思路:
乍一看像期望dp。细致思考后能够发现这是一个区间DP。如果一个伞兵落在x点。那么他走的路程的期望为p1*|x1-x|+p2*|x2-x|....*pm*|xm-x|。所以我们能够把n个伞兵等价成一个伞兵。
然后它到一个点的概率为全部伞兵到那点的概率总和。那如今就能够写出状态了。dp[i][j]表示在前i个位置建j个基地。
该等效伞兵走的路程的最小期望。那么这题就类似poj 1160
Post Office那题了。转移方程为dp[i][j]=dp[k][j-1]+cost[k+1][i]。k<i。
cost[i][j]表示在i,j之间建一个基地且该基地负责集合[i,j]上的伞兵。
所走距离的期望。如今重点怎么高速算cost[i][j]了。考虑我们在算cost[j][i]的时候。随着j的减小基地的最优位置cur要么前移要么不变。所以我们就能够在O(n^2)的时间复杂度下算出了。
具体见代码:
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<map>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1010;
typedef long long ll;
struct node
{
int x;
double p;
} po[maxn];
map<int,double> mp;
map<int,double>::iterator it;
int n,m;
double dp[maxn][55],cost[maxn][maxn];
int main()
{
int k,i,j,l,x,cur,dis;
double p,lp,rp,cl,cr,tp; while(scanf("%d%d",&k,&m),k||m)
{
mp.clear();
for(i=0;i<k;i++)
{
scanf("%d",&l);
while(l--)
{
scanf("%d%lf",&x,&p);
mp[x]+=p;
}
}
n=0;
for(it=mp.begin();it!=mp.end();it++)
{
po[++n].x=it->first;
po[n].p=it->second;
}
for(i=n;i>=1;i--)
{
cost[i][i]=0;
cur=i;
rp=po[i].p;
lp=0;
cl=cr=0;
for(j=i-1;j>=1;j--)
{
dis=po[cur].x-po[j].x;
cl+=dis*po[j].p;//重心位置左边的期望和
lp+=po[j].p;//重心位置左边的概率和cr,rp为重心位置右边相应值
tp=cl+cr;//总期望
while(cur>1&&rp-lp<0)
{
dis=po[cur].x-po[cur-1].x;
cr+=dis*rp;
cl-=dis*lp;
cur--;
rp+=po[cur].p;
lp-=po[cur].p;
tp=cl+cr;
}
cost[j][i]=tp;
//printf("%d->%d tp %lf\n",j,i,tp);
}
}
for(i=0;i<=m;i++)
dp[i][i]=0;
for(i=1;i<=n;i++)
dp[i][0]=1e15;
for(j=1;j<=m;j++)
{
for(i=j;i<=n;i++)
{
tp=1e15;
for(k=j-1;k<i;k++)
tp=min(tp,dp[k][j-1]+cost[k+1][i]);
dp[i][j]=tp;
}
}
printf("%.2lf\n",dp[n][m]);
}
return 0;
}
hdu 4412 Sky Soldiers(区间DP)的更多相关文章
-
hdu 4412 Sky Soldiers DP
动态规划,主要是用单调性求区间的最小期望. 代码如下: #include<iostream> #include<stdio.h> #include<algorithm&g ...
-
HDU 5115 Dire Wolf 区间dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5115 Dire Wolf Time Limit: 5000/5000 MS (Java/Others ...
-
HDU 5693 D Game 区间dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5693 题解: 一种朴实的想法是枚举选择可以删除的两个或三个数(其他的大于三的数都能凑成2和3的和), ...
-
hdu 4597 Play Game 区间dp
Play Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=459 ...
-
【HDOJ】4412 Sky Soldiers
1. 题目描述有$k$个伞兵跳伞,有$m$个汇点.当伞兵着陆后,需要走向离他最近的汇点.如何选择这$m$个结点,可以使得士兵最终行走的距离的期望最小.求这个最小的期望. 2. 基本思路假设已经选好了这 ...
-
hdu 6049---Sdjpx Is Happy(区间DP+枚举)
题目链接 Problem Description Sdjpx is a powful man,he controls a big country.There are n soldiers number ...
-
hdu 5693 &;&; LightOj 1422 区间DP
hdu 5693 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5693 等差数列当划分细了后只用比较2个或者3个数就可以了,因为大于3的数都可以由2和3 ...
-
hdu 4745 Two Rabbits 区间DP
http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有两只兔子Tom Jerry, 他们在一个用石头围城的环形的路上跳, Tom只能顺时针跳,Jerr ...
-
hdu 5181 numbers——思路+区间DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...
随机推荐
-
thymeleaf的url属性
一.使用表达式形式:@{...} 例如: <a th:href="@{http://localhost:8080/gtvg/order/details}">view&l ...
-
c/c++内存机制(一)(转)
转自:http://www.cnblogs.com/ComputerG/archive/2012/02/01/2334898.html 一:C语言中的内存机制 在C语言中,内存主要分为如下5个存储区: ...
-
mini-httpd源码分析-port.h
针对不同系统的宏定义,对于Linux而言 /* port.h - portability defines */ #elif defined(linux) # define OS_Linux # def ...
-
10、end关键字和Fibonacci series: 斐波纳契数列
# Fibonacci series: 斐波纳契数列 # 两个元素的总和确定了下一个数 a, b = 0, 1 #复合赋值表达式,a,b同时赋值0和1 while b < 10: print(b ...
-
张高兴的 Windows 10 IoT 开发笔记:HC-SR04 超声波测距模块
HC-SR04 采用 IO 触发测距.下面介绍一下其在 Windows 10 IoT Core 环境下的用法. 项目运行在 Raspberry Pi 2/3 上,使用 C# 进行编码. 1. 准备 H ...
-
HttpRuntime.Cache .Net自带的缓存类
.Net自带的缓存有两个,一个是Asp.Net的缓存 HttpContext.Cache,一个是.Net应用程序级别的缓存,HttpRuntime.Cache. MSDN上有解释说: HttpCont ...
-
CLOUD设置过滤方案不共享
1.打开BOS,找到应用框架-动态表单-过滤方案另存 2.找到共享给他人,把可见性全部去掉
-
高效编写微信小程序
原文:https://isux.tencent.com/high-performance-wechat-app-development.html 前言 微信小程序是一个工程,就和盖房子一样,打好了地基 ...
-
软工作业No.1。Java实现WC.exe
网址:https://github.com/a249970271/WC WC 项目要求 wc.exe 是一个常见的工具,它能统计文本文件的字符数.单词数和行数.这个项目要求写一个命令行程序,模仿已有w ...
-
Jsp+servlet+mysql搭建套路
1.建立数据库根据需求建立相应的数据库确立数据库的字段.属性.主键等2.建立javaweb项目,搭建开发环境在开发环境的/WebRoot/WEB-INF下建立lib文件夹,存放需要使用的jar包常用的 ...