java顺序表和树的实现

时间:2021-08-02 02:56:05

一、顺序表

1.线性表

//java顺序表的实现,如ArrayList就是用线性表实现的,优点是查找快,缺点是添加或删除要移动很多元素,速度慢
public class SequenceList {
private int MAXLENGTH;//顺序表大小
private int count;//线性表存在数据个数
private Data[] data;
//数据储存
private static class Data{
String name;
int stuNo;
int scores;
}
public void init(int maxLength){
this.MAXLENGTH=maxLength;
data=new Data[MAXLENGTH];
}
//添加一条数据
public void add(Data d){
if(count==MAXLENGTH){
System.out.println("顺序表已满!不可添加");
}
else{
data[count]=d;
count++;
System.out.println("添加成功!");
}
}
//插入任意一条数据
public void insert(Data d,int position){
if(count==MAXLENGTH||position>MAXLENGTH||position<0){
System.out.println("顺序表已满或者插入位置有问题!不可插入");
}
else{
for(int i=count;i>=position;i--){
data[i+1]=data[i];
}
data[position]=d;
count++;
System.out.println("插入成功!");
}
}
//删除数据
public void del(int position){
if(position>count+1||position<0){
System.out.println("删除位置有误!");
}
else{
for(int i=position;i<count;i++){
data[i]=data[i+1];
}
count--;
System.out.println("删除成功!");
}
}
//更新一个数据
public void updata(Data d,int position){
if(position>count+1||position<0){
System.out.println("更新位置有误!");
}
else{
data[position]=d;
System.out.println("更新成功!");
}
}
//查询一个数据
public Data sel(int position){
if(position>count+1||position<0){
System.out.println("查询位置有误!");
return null;
}
else{
return data[position];
}
}
public static void main(String[] args){
SequenceList sl=new SequenceList();
sl.init(10);
Data d=new Data();
sl.add(d);
sl.insert(d, 0);
sl.del(0);
}
}

2.链式表

 public class SingleList {

    private Node_Single head = null;//头节点
private Node_Single tail = null;//尾节点(空节点)相当于哨兵元素 /**
* 初始化一个链表(设置head )
* @param key
*/
public void initList(Node_Single node){
head = node;
head.next = tail;
} /**
* 添加一个元素
* @param node
*/
public void addTolist(Node_Single node){
if(head == null){
initList(node);
}else{
Node_Single tmp = head;
head = node;
node.next = tmp;
}
} /**
* 遍历链表,删除某一个节点
* @param node
* @param myList
*/
public void deleteNode(Node_Single node,SingleList myList){
if(myList == null){
return ;
}
Node_Single tmp =null;
for(tmp = myList.getHead();tmp!=null;tmp = tmp.next){
if(tmp.next !=null && node.getKey().equals(tmp.next.getKey())){//该元素和后一个元素相同。指针指向下一元素的下一元素
if(tmp.next.next != null){
tmp.next = tmp.next.next;
}else{
tmp.next = null;
}
}
}
} public void printList(SingleList myList){
Node_Single tmp =null;
for(tmp = myList.getHead();tmp!=null;tmp = tmp.next){
System.out.println(tmp.getKey());
}
} public Node_Single getHead() {
return head;
}
public void setHead(Node_Single head) {
this.head = head;
}
public Node_Single getTail() {
return tail;
}
public void setTail(Node_Single tail) {
this.tail = tail;
}
public static void main(String[] args){
SingleList myList = new SingleList();
Node_Single node_1 = new Node_Single("1");
Node_Single node_2 = new Node_Single("2");
Node_Single node_3 = new Node_Single("3");
Node_Single node_4 = new Node_Single("4");
Node_Single node_5 = new Node_Single("5");
Node_Single node_6 = new Node_Single("6");
Node_Single node_7 = new Node_Single("7");
myList.addTolist(node_1);
myList.addTolist(node_2);
myList.addTolist(node_3);
myList.addTolist(node_4);
myList.addTolist(node_5);
myList.addTolist(node_6);
myList.addTolist(node_7);
myList.deleteNode(node_3, myList);
myList.printList(myList);
}
public static class Node_Single {
public String key;//节点的值 public Node_Single next;//指向下一个的指针 public Node_Single(String key){//初始化head
this.key = key;
this.next = null;
}
public Node_Single(String key,Node_Single next){
this.key = key;
this.next = next;
}
public String getKey() {
return key;
} public void setKey(String key) {
this.key = key;
} public Node_Single getNext() {
return next;
} public void setNext(Node_Single next) {
this.next = next;
}
@Override
public String toString() {
return "Node_Single [key=" + key + ", next=" + next + "]";
}
}
}

三、二叉树

import java.util.Stack;

public class BinaryTree {  

    private TreeNode root=null;  

    public BinaryTree(){
root=new TreeNode(1,"rootNode(A)");
} /**
* 创建一棵二叉树
* <pre>
* A
* B C
* D E F
* </pre>
* @param root
* @author WWX
*/
public void createBinTree(TreeNode root){
TreeNode newNodeB = new TreeNode(2,"B");
TreeNode newNodeC = new TreeNode(3,"C");
TreeNode newNodeD = new TreeNode(4,"D");
TreeNode newNodeE = new TreeNode(5,"E");
TreeNode newNodeF = new TreeNode(6,"F");
root.leftChild=newNodeB;
root.rightChild=newNodeC;
root.leftChild.leftChild=newNodeD;
root.leftChild.rightChild=newNodeE;
root.rightChild.rightChild=newNodeF;
} public boolean isEmpty(){
return root==null;
} //树的高度
public int height(){
return height(root);
} //节点个数
public int size(){
return size(root);
} private int height(TreeNode subTree){
if(subTree==null)
return 0;//递归结束:空树高度为0
else{
int i=height(subTree.leftChild);
int j=height(subTree.rightChild);
return (i<j)?(j+1):(i+1);
}
} private int size(TreeNode subTree){
if(subTree==null){
return 0;
}else{
return 1+size(subTree.leftChild)
+size(subTree.rightChild);
}
} //返回双亲结点
public TreeNode parent(TreeNode element){
return (root==null|| root==element)?null:parent(root, element);
} public TreeNode parent(TreeNode subTree,TreeNode element){
if(subTree==null)
return null;
if(subTree.leftChild==element||subTree.rightChild==element)
//返回父结点地址
return subTree;
TreeNode p;
//现在左子树中找,如果左子树中没有找到,才到右子树去找
if((p=parent(subTree.leftChild, element))!=null)
//递归在左子树中搜索
return p;
else
//递归在右子树中搜索
return parent(subTree.rightChild, element);
} public TreeNode getLeftChildNode(TreeNode element){
return (element!=null)?element.leftChild:null;
} public TreeNode getRightChildNode(TreeNode element){
return (element!=null)?element.rightChild:null;
} public TreeNode getRoot(){
return root;
} //在释放某个结点时,该结点的左右子树都已经释放,
//所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
public void destroy(TreeNode subTree){
//删除根为subTree的子树
if(subTree!=null){
//删除左子树
destroy(subTree.leftChild);
//删除右子树
destroy(subTree.rightChild);
//删除根结点
subTree=null;
}
} public void traverse(TreeNode subTree){
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
traverse(subTree.leftChild);
traverse(subTree.rightChild);
} //前序遍历
public void preOrder(TreeNode subTree){
if(subTree!=null){
visted(subTree);
preOrder(subTree.leftChild);
preOrder(subTree.rightChild);
}
} //中序遍历
public void inOrder(TreeNode subTree){
if(subTree!=null){
inOrder(subTree.leftChild);
visted(subTree);
inOrder(subTree.rightChild);
}
} //后续遍历
public void postOrder(TreeNode subTree) {
if (subTree != null) {
postOrder(subTree.leftChild);
postOrder(subTree.rightChild);
visted(subTree);
}
} //前序遍历的非递归实现
public void nonRecPreOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<TreeNode>();
TreeNode node=p;
while(node!=null||stack.size()>0){
while(node!=null){
visted(node);
stack.push(node);
node=node.leftChild;
}
while(stack.size()>0){
node=stack.pop();
node=node.rightChild;
}
}
} //中序遍历的非递归实现
public void nonRecInOrder(TreeNode p){
Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(node!=null||stack.size()>0){
//存在左子树
while(node!=null){
stack.push(node);
node=node.leftChild;
}
//栈非空
if(stack.size()>0){
node=stack.pop();
visted(node);
node=node.rightChild;
}
}
} //后序遍历的非递归实现
public void noRecPostOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(p!=null){
//左子树入栈
for(;p.leftChild!=null;p=p.leftChild){
stack.push(p);
}
//当前结点无右子树或右子树已经输出
while(p!=null&&(p.rightChild==null||p.rightChild==node)){
visted(p);
//纪录上一个已输出结点
node =p;
if(stack.empty())
return;
p=stack.pop();
}
//处理右子树
stack.push(p);
p=p.rightChild;
}
}
public void visted(TreeNode subTree){
subTree.isVisted=true;
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
} /**
* 二叉树的节点数据结构
* @author WWX
*/
private class TreeNode{
private int key=0;
private String data=null;
private boolean isVisted=false;
private TreeNode leftChild=null;
private TreeNode rightChild=null; public TreeNode(){} /**
* @param key 层序编码
* @param data 数据域
*/
public TreeNode(int key,String data){
this.key=key;
this.data=data;
this.leftChild=null;
this.rightChild=null;
} } //测试
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.createBinTree(bt.root);
System.out.println("the size of the tree is " + bt.size());
System.out.println("the height of the tree is " + bt.height()); System.out.println("*******(前序遍历)[ABDECF]遍历*****************");
bt.preOrder(bt.root); System.out.println("*******(中序遍历)[DBEACF]遍历*****************");
bt.inOrder(bt.root); System.out.println("*******(后序遍历)[DEBFCA]遍历*****************");
bt.postOrder(bt.root); System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************");
bt.nonRecPreOrder(bt.root); System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************");
bt.nonRecInOrder(bt.root); System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************");
bt.noRecPostOrder(bt.root);
}
}