我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
'''
Created on 2018-4-16
'''
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.models import Model
from keras.callbacks import ModelCheckpoint,Callback
import numpy as np
import tflearn
import tflearn.datasets.mnist as mnist
x_train, y_train, x_test, y_test = mnist.load_data(one_hot = True )
x_valid = x_test[: 5000 ]
y_valid = y_test[: 5000 ]
x_test = x_test[ 5000 :]
y_test = y_test[ 5000 :]
print (x_valid.shape)
print (x_test.shape)
model = Sequential()
model.add(Dense(units = 64 , activation = 'relu' , input_dim = 784 ))
model.add(Dense(units = 10 , activation = 'softmax' ))
model. compile (loss = 'categorical_crossentropy' ,
optimizer = 'sgd' ,
metrics = [ 'accuracy' ])
filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'
# filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}.h5'
checkpoint = ModelCheckpoint(filepath, monitor = 'val_loss' , verbose = 1 , save_best_only = True , mode = 'min' )
print (model.get_config())
# [{'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'batch_input_shape': (None, 784), 'trainable': True, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'units': 64, 'dtype': 'float32', 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'activation': 'relu', 'name': 'dense_1'}}, {'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'trainable': True, 'units': 10, 'activation': 'softmax', 'name': 'dense_2'}}]
# model.fit(x_train, y_train, epochs=1, batch_size=128, callbacks=[checkpoint],validation_data=(x_valid, y_valid))
model.fit(x_train, y_train, epochs = 1 ,validation_data = (x_valid, y_valid),steps_per_epoch = 10 ,validation_steps = 1 )
# score = model.evaluate(x_test, y_test, batch_size=128)
# print(score)
# #获取模型结构状况
# model.summary()
# _________________________________________________________________
# Layer (type) Output Shape Param #
# =================================================================
# dense_1 (Dense) (None, 64) 50240(784*64+64(b))
# _________________________________________________________________
# dense_2 (Dense) (None, 10) 650(64*10 + 10 )
# =================================================================
# #根据下标和名称返回层对象
# layer = model.get_layer(index = 0)
# 获取模型权重,设置权重model.set_weights()
weights = np.array(model.get_weights())
print (weights.shape)
# (4,)权重由4部分组成
print (weights[ 0 ].shape)
# (784, 64)dense_1 w1
print (weights[ 1 ].shape)
# (64,)dense_1 b1
print (weights[ 2 ].shape)
# (64, 10)dense_2 w2
print (weights[ 3 ].shape)
# (10,)dense_2 b2
# # 保存权重和加载权重
# model.save_weights("D:\\xxx\\weights.h5")
# model.load_weights("D:\\xxx\\weights.h5", by_name=False)#by_name=True,可以根据名字匹配和层载入权重
# 查看中间结果,必须要先声明个函数式模型
dense1_layer_model = Model(inputs = model. input ,outputs = model.get_layer( 'dense_1' ).output)
out = dense1_layer_model.predict(x_test)
print (out.shape)
# (5000, 64)
# 如果是函数式模型,则可以直接输出
# import keras
# from keras.models import Model
# from keras.callbacks import ModelCheckpoint,Callback
# import numpy as np
# from keras.layers import Input,Conv2D,MaxPooling2D
# import cv2
#
# image = cv2.imread("D:\\machineTest\\falali.jpg")
# print(image.shape)
# cv2.imshow("1",image)
#
# # 第一层conv
# image = image.reshape([-1, 386, 580, 3])
# img_input = Input(shape=(386, 580, 3))
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
# x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# model = Model(inputs=img_input, outputs=x)
# out = model.predict(image)
# print(out.shape)
# out = out.reshape(193, 290,64)
# image_conv1 = out[:,:,1].reshape(193, 290)
# image_conv2 = out[:,:,20].reshape(193, 290)
# image_conv3 = out[:,:,40].reshape(193, 290)
# image_conv4 = out[:,:,60].reshape(193, 290)
# cv2.imshow("conv1",image_conv1)
# cv2.imshow("conv2",image_conv2)
# cv2.imshow("conv3",image_conv3)
# cv2.imshow("conv4",image_conv4)
# cv2.waitKey(0)
|
中间结果输出可以查看conv过之后的图像:
原始图像:
经过一层conv以后,输出其中4张图片:
以上这篇keras 模型参数,模型保存,中间结果输出操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u011311291/article/details/79963831