IV OPTIMIZATION
网络训练用SGD,数据形式ranking unit
A.Ranking Unit Sampling
每个unit包含一个probe x,还有对应的正确匹配x+,相关集Rx,Rx来自G-,但没有取全部G-。为了计算处理。
loss is
loss对要求的f求导。损失相似度的梯度是
三元组约束问题,增加基数Rx=1变为Rx=4,为了使正负训练样本更适合(具体怎么解没说,不懂)
B.Training Strategies
(1)Pre-Training
用其他dataset的数据预训练,微调参数
(2)Relaxing the cross-view constraint:
G-取的必须和x不同个相机,放在约束,同个相机也可以,为增加数据
(3)Data Augmentation
扩大数据也就是图片处理。三种:flip,翻转,每个子照片按中心垂直线翻转0.5;两个图片交换位置0.5,可以产生8种;crop随机去227×227大小的patch(试过5个patch,*和四个角,效果差不多)
test时候也是一样,在8中情况下取中间的crop
V EXPERIMENT
1三个dataset:两个single-shot、一个multi-shot
2和其他deep-based的算法比较
3close-world和open-world
4cross-dataset