题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
A blockhouse is a small castle that has four openings through which to shoot. The four openings are facing North, East, South, and West, respectively. There will be one machine gun shooting through each opening.
Here we assume that a bullet is so powerful that it can run across any distance and destroy a blockhouse on its way. On the other hand, a wall is so strongly built that can stop the bullets.
The goal is to place as many blockhouses in a city as possible so that no two can destroy each other. A configuration of blockhouses is legal provided that no two blockhouses are on the same horizontal row or vertical column in a map unless there is at least one wall separating them. In this problem we will consider small square cities (at most 4x4) that contain walls through which bullets cannot run through.
The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of blockhouses in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.
Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.
#include<cstdio>
#include<algorithm>
using namespace std;
int n;
char map[][];
int ans;
void dfs(int now,int num)
{
if(now==n*n+)
{
ans=max(ans,num);
return;
} int row=(now-)/n+, col=(now-)%n+; if(map[row][col]=='X')
{
dfs(now+,num);
return;
} bool ok=;
for(int i=col-;i>=;i--)//向前遍历当前行
{
if(map[row][i]=='B')
{
ok=;
break;
}
if(map[row][i]=='X') break;
}
for(int i=row-;i>=;i--)//向前遍历当前列
{
if(map[i][col]=='B')
{
ok=;
break;
}
if(map[i][col]=='X') break;
}
if(ok)
{
map[row][col]='B';
dfs(now+,num+);
map[row][col]='.';
}
dfs(now+,num);
return;
}
int main()
{
while(scanf("%d",&n) && n!=)
{
for(int i=;i<=n;i++) scanf("%s",map[i]+);
ans=;
dfs(,);
printf("%d\n",ans);
}
}
方法②
用二分图最大匹配来做本题。
前置知识点:http://www.cnblogs.com/dilthey/p/7647630.html
建模:
我们对这个方阵的每一行,以方阵的边界或者一堵墙为端点,我们对每一个“行段”(从一端开始到一端结束)的方格组标记为一个顶点,全部放入L集;
例如:
再对这个方阵的每一列,依然以方阵的边界或者一堵墙为端点,我们对每一个“列段”(从一端开始到一端结束)的方格组标记为一个顶点,全部放入R集;
例如:
那么,对应于方格内的每个格子,它们都有一个L集内的顶点编号,一个R集内的顶点编号,我们就建立一条连接两个这两个顶点的边;
then,根据匹配的要求,任意两条边都没有公共顶点,
即任意一个格子,都独占一个L集内的顶点,一个R集内的顶点,
即如果这里放了一个碉堡,那么它都独占了它所在的一个“行段”,一个“列段”,这就满足了任意两个碉堡间不会互相攻击;
那么,任意一种碉堡的放置方案,都对应一个「匹配」,我们找到最大匹配,就找到了放置碉堡最多的方案。
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
#define MAX 35
using namespace std;
//匈牙利算法 - st
struct Edge{
int u,v;
};
vector<Edge> E;
vector<int> G[MAX];
int lN,rN;
int matching[MAX];
int vis[MAX];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void add_edge(int u,int v)
{
E.push_back((Edge){u,v});
E.push_back((Edge){v,u});
int _size=E.size();
G[u].push_back(_size-);
G[v].push_back(_size-);
}
bool dfs(int u)
{
for(int i=,_size=G[u].size();i<_size;i++)
{
int v=E[G[u][i]].v;
if (!vis[v])
{
vis[v]=;
if(!matching[v] || dfs(matching[v]))
{
matching[v]=u;
matching[u]=v;
return true;
}
}
}
return false;
}
int hungarian()
{
int ret=;
memset(matching,,sizeof(matching));
for(int i=;i<=lN;i++)
{
if(!matching[i])
{
memset(vis,,sizeof(vis));
if(dfs(i)) ret++;
}
}
return ret;
}
//匈牙利算法 - ed
int main()
{
int n;
char mp[][];
int row_id[][],col_id[][];
while(scanf("%d",&n) && n!=)
{
for(int i=;i<=n;i++) scanf("%s",mp[i]+); lN=, rN=;
for(int i=;i<=n;i++)//对“行段”进行编号
{
for(int j=;j<=n;j++)
{
if(mp[i][j]=='.')
{
if( j== || mp[i][j-]=='X' ) row_id[i][j] = ++lN;
else row_id[i][j] = lN;
}
}
}
for(int j=;j<=n;j++)//对“列段”进行编号
{
for(int i=;i<=n;i++)
{
if(mp[i][j]=='.')
{
if( i== || mp[i-][j]=='X' ) col_id[i][j] = lN + (++rN);
else col_id[i][j] = lN + rN;
}
}
} init(,lN+rN);
for(int i=;i<=n;i++)//建边、建图
{
for(int j=;j<=n;j++)
{
if(mp[i][j]=='X') continue;
add_edge(row_id[i][j],col_id[i][j]);
}
} printf("%d\n",hungarian());
}
}
方法③
当然了,二分图最大匹配,也可以使用最大流来求解;
我们对二分图进行如此构建流网络:
建立超级源点s,超级汇点t;
对所有L集的点,连一条从s出发的边,容量为1;
对所有R集的点,连一条到达t的边,容量为1;
对原二分图本就存在的边,直接赋值容量=1,加入流网络;
最后求出最大流,即二分图的最大匹配。
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#define MAX 35
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int u,v,c,f;
};
struct Dinic
{
int s,t;
vector<Edge> E;
vector<int> G[MAX];
bool vis[MAX];
int lev[MAX];
int cur[MAX];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int from,int to,int cap)
{
E.push_back((Edge){from,to,cap,});
E.push_back((Edge){to,from,,});
int m=E.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int> q;
q.push(s);
lev[s]=;
vis[s]=;
while(!q.empty())
{
int now=q.front(); q.pop();
for(int i=,_size=G[now].size();i<_size;i++)
{
Edge edge=E[G[now][i]];
int nex=edge.v;
if(!vis[nex] && edge.c>edge.f)
{
lev[nex]=lev[now]+;
q.push(nex);
vis[nex]=;
}
}
}
return vis[t];
}
int dfs(int now,int aug)
{
if(now==t || aug==) return aug;
int flow=,f;
for(int& i=cur[now],_size=G[now].size();i<_size;i++)
{
Edge& edge=E[G[now][i]];
int nex=edge.v;
if(lev[now]+ == lev[nex] && (f=dfs(nex,min(aug,edge.c-edge.f)))>)
{
edge.f+=f;
E[G[now][i]^].f-=f;
flow+=f;
aug-=f;
if(!aug) break;
}
}
return flow;
}
int maxflow()
{
int flow=;
while(bfs())
{
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}dinic;
int main()
{
int n;
char mp[][];
int row_id[][],col_id[][];
while(scanf("%d",&n) && n!=)
{
for(int i=;i<=n;i++) scanf("%s",mp[i]+); int lN=, rN=;
for(int i=;i<=n;i++)//对“行段”进行编号
{
for(int j=;j<=n;j++)
{
if(mp[i][j]=='.')
{
if( j== || mp[i][j-]=='X' ) row_id[i][j] = ++lN;
else row_id[i][j] = lN;
}
}
}
for(int j=;j<=n;j++)//对“列段”进行编号
{
for(int i=;i<=n;i++)
{
if(mp[i][j]=='.')
{
if( i== || mp[i-][j]=='X' ) col_id[i][j] = lN + (++rN);
else col_id[i][j] = lN + rN;
}
}
} dinic.init(,lN+rN+);
dinic.s=, dinic.t=lN+rN+;
for(int i=;i<=lN;i++) dinic.addedge(dinic.s,i,);
for(int i=;i<=rN;i++) dinic.addedge(i+lN,dinic.t,);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(mp[i][j]=='X') continue;
dinic.addedge(row_id[i][j],col_id[i][j],);
}
}
printf("%d\n",dinic.maxflow());
}
}
(当然,从复杂度上,就不难看出,用Dinic算法求二分图最大匹配比匈牙利算法慢。)
HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]的更多相关文章
-
HDOJ(HDU).1045 Fire Net (DFS)
HDOJ(HDU).1045 Fire Net [从零开始DFS(7)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HD ...
-
HDU 2444 - The Accomodation of Students - [二分图判断][匈牙利算法模板]
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2444 Time Limit: 5000/1000 MS (Java/Others) Mem ...
-
hdu 2063 过山车 (最大匹配 匈牙利算法模板)
匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最 ...
-
Ural1109_Conference(二分图最大匹配/匈牙利算法/网络最大流)
解题报告 二分图第一题. 题目描写叙述: 为了參加即将召开的会议,A国派出M位代表,B国派出N位代表,(N,M<=1000) 会议召开前,选出K队代表,每对代表必须一个是A国的,一个是B国的; ...
-
HDU 1045 Fire Net(DFS)
Fire Net Problem Description Suppose that we have a square city with straight streets. A map of a ci ...
-
51Nod 飞行员配对(二分图最大匹配)(匈牙利算法模板题)
第二次世界大战时期,英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2名飞行员,其中1名是英国飞行员,另1名是外籍飞行员.在众多的飞行员中, ...
-
USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)
The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...
-
UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法
二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...
-
HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))
Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
随机推荐
-
Sparse Graph---hdu5876(set+bfs+补图求最短路)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5876 题意:有一个含有n个点的无向图,已知图的补图含有m条边u, v:求在原图中,起点s到 ...
-
PL/SQL 听课笔记
PL/SQL: 知识回顾: SQL: 结构化查询语言: T-SQL: microsoft sql语言: PL/SQL: Oracle sql语言: 变量命名规则: 1.首字母必须是字母,可以包含字 ...
-
【M30】代理类
1.考虑二维数组,在栈上分配,必须在编译时确定大小,也就是大小是常量.另外一点,C++不支持在堆上分配二维数组.怎么解决这个问题? 二维数组可以看成,一维数组的数组.因此,可以使用代理类,Array2 ...
-
Centos下删除文件名乱码文件
centos下通过rm命令来删除文件,但是如果要删除文件名乱码的文件,就不能直接使用rm命令了,因为压根就无法输出文件名来.不过借助find命令可以实现对其删除.在linux下对于每个文件都一个对应的 ...
-
html5移动端meta自动适应标签
控制显示区域各种属性: <meta content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-sc ...
-
iOS 中的block异常
转自:iOS 知识小集 我们在调用block时,如果这个block为nil,则程序会崩溃,报类似于EXC_BAD_ACCESS(code=1, address=0xc)异常[32位下的结果,如果是64 ...
-
SpringBoot 中 @RequestBody的正确使用方法
SpringBoot 中 @RequestBody的正确使用方法 最近在接收一个要离职同事的工作,接手的项目是用SpringBoot搭建的,其中看到了这样的写法: @RequestMapping(&q ...
-
Linux排查Java程序占用CPU很高的解决办法
Java的工具集相当强大,学习成本也很低,处理线上问题时,jstack这个工具就比微软的windbg,好学好用很多,3步找出占用CPU很高的源所在.而windbg反人类的各种命令,实在不敢恭维. 故意 ...
-
spring 各个版本的源码、jar包和源码jar包下载地址
spring各个版本的源码jar包.文档jar包和spring的jar包 http://maven.springframework.org/release/org/springframework/sp ...
-
Windows Server 2012 AD域管理创建
前言 关于AD域管理及其权限划分概论: 1. AD域源于微软,适用于windows,为企业集中化管理和信息安全提供强力保障. 2. 提供域中文件夹共享,但同时又对不同用户有不用的权限. 3.通过对设备 ...