For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{cc} I&A\\ 0&I \ea}^{-1}\sex{\ba{cc} AB&0\\ B&0 \ea} \sex{\ba{cc} I&A\\ 0&I \ea}=\sex{\ba{cc} 0&0\\ B&BA \ea}. \eex$$ This implies that $AB$ and $BA$ have the same eigenvalues.(This last fact can be proved in another way as follows. If $B$ is invertible, then $AB=B^{-1}(BA)B$. So, $AB$ and $BA$ have the same eigenvalues. Since invertible matrices are dense in the space of matrices, and a general known fact in complex analysis is that the roots of a polynomial vary continuously with the coefficients, the above conclusion also holds in general.)
Solution. This follows from direct computations.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7的更多相关文章
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
-
ROS学习笔记(四)——环境变量配置
1.查看环境变量配置情况,其实并没有什么卵用 $ export | grep ROS 或者用 $ printenv | grep ROS2.配置环境变量??$ source /opt/ros/indi ...
-
B、B*、B+
转自:http://blog.csdn.net/v_JULY_v/article/details/6530142 从B 树.B+ 树.B* 树谈到R 树 作者:July.weedge.Frankie. ...
-
django连接mysql自动同步生成数据表
python manage.py makemigrations python manage.py migrate 如果是 Django 不主动提示创建管理员(Django 1.9不提示)用下面的命令创 ...
-
AngularJS学习小结
在刚学习AngularJS的时候觉得好像挺简单的,看见老师每次用很少的代码就做出用源生代码或者JQuery要用多行代码才做出的效果的时候觉得好像思路很简单,也很好写就写出来了,但是等到我们自己做的时候 ...
-
psutil官方文档
psutil documentation¶ Quick links Home page Install Blog Forum Download Development guide What’s new ...
-
腾讯Web工程师的前端书单
2014年一月以来,自己接触web前端开发已经两年多了,记录一下自己前端学习路上看过的,以及道听途说的一些书,基本上按照由浅入深来介绍. JavaScript 入门 <JavaScript权威指 ...
-
BZOJ-8-2115: [Wc2011] Xor
https://www.lydsy.com/JudgeOnline/problem.php?id=2115 题意 : 给出一个连通无向图,求从1到n异或和最小的路径. 思路 :随意找一条简单路径 1- ...
-
Charles设置HTTPS抓包
1. 配置 Charles 根证书 点击 Help -> SSL Proxying -> Install Charles Root Certificate 之后会弹出钥匙串,如果不弹出,请 ...
-
PAT 甲级 1017 Queueing at Bank
https://pintia.cn/problem-sets/994805342720868352/problems/994805491530579968 Suppose a bank has K w ...
-
LG3975 [TJOI2015]弦论
题意 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在< String theory>中看到了这样一道问题:对于一个给定的长度为n的字符串,求出它的第k小子串是什么.你能帮帮她吗? ...