Show that matrices with distinct eigenvalues are dense in the space of all $n\times n$ matrices. (Use the Schur triangularisation)
Solution. By the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{ccc} \vLm_1&&*\\ &\ddots&\\ &&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea}_{n_i\times n_i}, \eex$$ with $\lm_1>\cdots>\lm_s$. For $\forall\ \ve>0$, we may replace the diagonal entries of $\vLm_i$ by $$\bex \lm_i+\frac{1}{ik} \eex$$ for $$\bex k>\max\sed{\frac{1}{n\ve},\max_{1\leq t<s}(\lm_t-\lm_{t+1})} \eex$$ to get a matrix $B_\ve$ with distinct eigenvalues with $\sen{A-B}_2<\ve$.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.5的更多相关文章
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
-
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
-
mysql命令行基本操作
开启:打开电脑的“开始”菜单栏,找到“运行”,在运行框中直接输入:net start mysql.再 登录:Mysql -P 端口号 -h mysql主机名\ip -u root (用户) - ...
-
NET代码重构
记一次.NET代码重构 好久没写代码了,终于好不容易接到了开发任务,一看时间还挺充足的,我就慢慢整吧,若是遇上赶进度,基本上直接是功能优先,完全不考虑设计.你可以认为我完全没有追求,当身后有鞭子使 ...
-
ASP.NET Session的共享
注: 在ashx文件中使用Session 首先添加引用 using System.Web.SessionState; 实现接口 public class XXXX: IHttpHandler ==&g ...
-
HDU 1226 超级密码 (搜素)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1226 题意简单,本来是一道很简单的搜素题目. 但是有两个bug: 1.M个整数可能有重复的. 2.N可 ...
-
ios 初体验<;页面切换>;
本章类容:介绍如何新建一个页面,打开另一个页面 1.在前面中,在工程Appdelegate.m 里面程序第一个走的方法,新建一个窗口,视图,控制器,可视化等, 2.然后在ViewController. ...
-
XML文件解析数据结构
最近在解析Android安装包内经过编译的二进制XML文件时想在内存中建立起其对应的树结构. 想了一早晨,思路如下图. 多叉树中的每个节点除了有子节点和兄弟节点以外还有一个指针指向父节点,然后根据状态 ...
-
语义SLAM研究现状总结
博客转载自:https://blog.csdn.net/xiaoxiaowenqiang/article/details/81051010 原文标题:深度学习结合SLAM 语义slam 语义分割 端到 ...
-
PrintService类打印
系统打印服务框架代码位于android.printservice包中.系统并没有实现具体打印功能,需要打印机厂商制作插件接入系统打印服务之后,自行实现 主要类: PrintDocument:表示待打印 ...
-
利用python 下paramiko模块无密码登录
利用python 下paramiko模块无密码登录 上次我个大家介绍了利用paramiko这个模块,可以模拟ssh登陆远程服务器,并且可以返回执行的命令结果,这次给大家介绍下如何利用已经建立的密钥 ...
-
HDU 2102 A计划(BFS)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2102 题目大意:公主被关在一个两层的迷宫里,迷宫的入口是S(0,0,0),公主的位置用P表示,时空传输 ...