本次我们选择的安卓游戏对象叫“单词英雄”,大家可以先下载这个游戏。
游戏的界面是这样的:
通过选择单词的意思进行攻击,选对了就正常攻击,选错了就象征性的攻击一下。玩了一段时间之后琢磨可以做成自动的,通过PIL识别图片里的单词和选项,然后翻译英文成中文意思,根据中文模糊匹配选择对应的选项。
查找了N多资料以后开始动手,程序用到以下这些东西:
PIL:Python Imaging Library 大名鼎鼎的图片处理模块
pytesser:Python下用来驱动tesseract-ocr来进行识别的模块
Tesseract-OCR:图像识别引擎,用来把图像识别成文字,可以识别英文和中文,以及其它语言
autopy:Python下用来模拟操作鼠标和键盘的模块。
安装步骤(win7环境):
(1)安装PIL,下载地址:http://www.pythonware.com/products/pil/,安装Python Imaging Library 1.1.7 for Python 2.7。
(2)安装pytesser,下载地址:http://code.google.com/p/pytesser/,下载解压后直接放在
C:\Python27\Lib\site-packages下,在文件夹下建立pytesser.pth文件,内容为C:\Python27\Lib\site-packages\pytesser_v0.0.1
(3)安装Tesseract OCR engine,下载:https://github.com/tesseract-ocr/tesseract/wiki/Downloads,下载Windows installer of tesseract-ocr 3.02.02 (including English language data)的安装文件,进行安装。
(4)安装语言包,在https://github.com/tesseract-ocr/tessdata下载chi_sim.traineddata简体中文语言包,放到安装的Tesseract OCR目标下的tessdata文件夹内,用来识别简体中文。
(5)修改C:\Python27\Lib\site-packages\pytesser_v0.0.1下的pytesser.py的函数,将原来的image_to_string函数增加语音选择参数language,language='chi_sim'就可以用来识别中文,默认为eng英文。
改好后的pytesser.py:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
"""OCR in Python using the Tesseract engine from Google
http://code.google.com/p/pytesser/
by Michael J.T. O'Kelly
V 0.0.1, 3/10/07"""
import Image
import subprocess
import util
import errors
tesseract_exe_name = 'tesseract' # Name of executable to be called at command line
scratch_image_name = "temp.bmp" # This file must be .bmp or other Tesseract-compatible format
scratch_text_name_root = "temp" # Leave out the .txt extension
cleanup_scratch_flag = True # Temporary files cleaned up after OCR operation
def call_tesseract(input_filename, output_filename, language):
"""Calls external tesseract.exe on input file (restrictions on types),
outputting output_filename+'txt'"""
args = [tesseract_exe_name, input_filename, output_filename, "-l", language]
proc = subprocess.Popen(args)
retcode = proc.wait()
if retcode!=0:
errors.check_for_errors()
def image_to_string(im, cleanup = cleanup_scratch_flag, language = "eng"):
"""Converts im to file, applies tesseract, and fetches resulting text.
If cleanup=True, delete scratch files after operation."""
try:
util.image_to_scratch(im, scratch_image_name)
call_tesseract(scratch_image_name, scratch_text_name_root,language)
text = util.retrieve_text(scratch_text_name_root)
finally:
if cleanup:
util.perform_cleanup(scratch_image_name, scratch_text_name_root)
return text
def image_file_to_string(filename, cleanup = cleanup_scratch_flag, graceful_errors=True, language = "eng"):
"""Applies tesseract to filename; or, if image is incompatible and graceful_errors=True,
converts to compatible format and then applies tesseract. Fetches resulting text.
If cleanup=True, delete scratch files after operation."""
try:
try:
call_tesseract(filename, scratch_text_name_root, language)
text = util.retrieve_text(scratch_text_name_root)
except errors.Tesser_General_Exception:
if graceful_errors:
im = Image.open(filename)
text = image_to_string(im, cleanup)
else:
raise
finally:
if cleanup:
util.perform_cleanup(scratch_image_name, scratch_text_name_root)
return text
if __name__=='__main__':
im = Image.open('phototest.tif')
text = image_to_string(im)
print text
try:
text = image_file_to_string('fnord.tif', graceful_errors=False)
except errors.Tesser_General_Exception, value:
print "fnord.tif is incompatible filetype. Try graceful_errors=True"
print value
text = image_file_to_string('fnord.tif', graceful_errors=True)
print "fnord.tif contents:", text
text = image_file_to_string('fonts_test.png', graceful_errors=True)
print text
|
(6)安装autopy,下载地址:https://pypi.python.org/pypi/autopy,下载autopy-0.51.win32-py2.7.exe进行安装,用来模拟鼠标操作。
说下程序的思路:
1. 首先是通过模拟器在WINDOWS下执行安卓的程序,然后用PicPick进行截图,将战斗画面中需要用到的区域进行测量,记录下具体在屏幕上的位置区域,用图中1来判断战斗是否开始(保存下来用作比对),用2,3,4,5,6的区域抓取识别成文字。
计算图片指纹的程序:
1
2
3
4
5
6
|
def get_hash(self, img):
#计算图片的hash值
image = img.convert("L")
pixels = list(image.getdata())
avg = sum(pixels) / len(pixels)
return "".join(map(lambda p : "1" if p > avg else "0", pixels))
|
图片识别成字符:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#识别出对应位置图像成字符,把字符交给chose处理
def getWordMeaning(self):
pic_up = ImageGrab.grab((480,350, 480+300, 350+66))
pic_aws1 = ImageGrab.grab((463,456, 463+362, 456+45))
pic_aws2 = ImageGrab.grab((463,530, 463+362, 530+45))
pic_aws3 = ImageGrab.grab((463,601, 463+362, 601+45))
pic_aws4 = ImageGrab.grab((463,673, 463+362, 673+45))
str_up = image_to_string(pic_up).strip().lower()
#判断当前单词和上次识别单词相同,就不继续识别
if str_up <> self.lastWord:
#如果题目单词是英文,选项按中文进行识别
if str_up.isalpha():
eng_up = self.dt[str_up].decode('gbk') if self.dt.has_key(str_up) else ''
chs1 = image_to_string(pic_aws1, language='chi_sim').decode('utf-8').strip()
chs2 = image_to_string(pic_aws2, language='chi_sim').decode('utf-8').strip()
chs3 = image_to_string(pic_aws3, language='chi_sim').decode('utf-8').strip()
chs4 = image_to_string(pic_aws4, language='chi_sim').decode('utf-8').strip()
print str_up, ':', eng_up
self.chose(eng_up, (chs1, chs2, chs3, chs4))
#如果题目单词是中文,选项按英文进行识别
else:
chs_up = image_to_string(pic_up, language='chi_sim').decode('utf-8').strip()
eng1 = image_to_string(pic_aws1).strip()
eng2 = image_to_string(pic_aws2).strip()
eng3 = image_to_string(pic_aws3).strip()
eng4 = image_to_string(pic_aws4).strip()
e2c1 = self.dt[eng1].decode('gbk') if self.dt.has_key(eng1) else ''
e2c2 = self.dt[eng2].decode('gbk') if self.dt.has_key(eng2) else ''
e2c3 = self.dt[eng3].decode('gbk') if self.dt.has_key(eng3) else ''
e2c4 = self.dt[eng4].decode('gbk') if self.dt.has_key(eng4) else ''
print chs_up
self.chose(chs_up, (e2c1, e2c2, e2c3, e2c4))
self.lastWord = str_up
return str_up
|
2. 对于1位置的图片提前截一个保存下来,然后通过计算当前画面和保存下来的图片的距离,判断如果小于40的就表示已经到了选择界面,然后识别2,3,4,5,6成字符,判断如果2位置识别成英文字符的,就用2解析出来的英文在字典中获取中文意思,然后再通过2的中文意思和3,4,5,6文字进行匹配,匹配上汉字最多的就做选择,如果匹配不上默认返回最后一个。之前本来考虑是用Fuzzywuzzy来进行模糊匹配算相似度的,不过后来测试了下对于中文匹配的效果不好,就改成按汉字单个进行匹配计算相似度。
匹配文字进行选择:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#根据传入的题目和选项进行匹配选择
def chose(self, g, chs_list):
j, max_score = -1, 0
same_list = None
#替换掉题目里的特殊字符
re_list = [u'~', u',', u'.', u';', u' ', u'a', u'V', u'v', u'i', u'n', u'【', u')', u'_', u'W', u'd', u'j', u'-', u't']
for i in re_list:
g = g.replace(i, '')
print type(g)
#判断2个字符串中相同字符,相同字符最多的为最佳答案
for i, chsWord in enumerate(chs_list):
print type(chsWord)
l = [x for x in g if x in chsWord and len(x)>0]
score = len(l) if l else 0
if score > max_score:
max_score = score
j = i
same_list = l
#如果没有匹配上默认选最后一个
if j ==-1:
print '1. %s; 2. %s; 3. %s; 4. %s; Not found choice.' % (chs_list[0], chs_list[1], chs_list[2], chs_list[3])
else:
print '1. %s; 2. %s; 3. %s; 4. %s; choice: %s' % (chs_list[0], chs_list[1], chs_list[2], chs_list[3], chs_list[j])
for k, v in enumerate(same_list):
print str(k) + '.' + v,
order = j + 1
self.mouseMove(order)
return order
|
3.最后通过mouseMove调用autopy操作鼠标点击对应位置进行选择。
程序运行的录像:http://v.youku.com/v_show/id_XMTYxNTAzMDUwNA==.html
程序完成后使用正常,因为图片识别准确率和字典的问题,正确率约为70%左右,效果还是比较满意。程序总体来说比较简单,做出来也就是纯粹娱乐一下,串联使用了图片识别、中文模糊匹配、鼠标模拟操作,算是个简单的小外挂吧,源程序和用到的文件如下:
http://git.oschina.net/highroom/My-Project/tree/master/Word%20Hero