看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
|
Class USeDropout(nn.Module):
def __init__( self ):
super (DropoutFC, self ).__init__()
self .fc = nn.Linear( 100 , 20 )
self .dropout = nn.Dropout(p = 0.5 )
def forward( self , input ):
out = self .fc( input )
out = self .dropout(out)
return out
Net = USeDropout()
Net.train()
|
示例代码如上,直接调用nn.Dropout即可,但是注意在调用时要将模型参数传入。
补充:Pytorch的nn.Dropout运行稳定性测试
结论:
Pytorch的nn.Dropout在每次被调用时dropout掉的参数都不一样,即使是同一次forward也不同。
如果模型里多次使用的dropout的dropout rate大小相同,用同一个dropout层即可。
如代码所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__( self ):
super (MyModel, self ).__init__()
self .dropout_1 = nn.Dropout( 0.5 )
self .dropout_2 = nn.Dropout( 0.5 )
def forward( self , input ):
# print(input)
drop_1 = self .dropout_1( input )
print (drop_1)
drop_1 = self .dropout_1( input )
print (drop_1)
drop_2 = self .dropout_2( input )
print (drop_2)
if __name__ = = '__main__' :
i = torch.rand(( 5 , 5 ))
m = MyModel()
m.forward(i)
|
结果如下:
*\python.exe */model.py
tensor([[0.0000, 0.0914, 0.0000, 1.4095, 0.0000],
[0.0000, 0.0000, 0.1726, 1.3800, 0.0000],
[1.7651, 0.0000, 0.0000, 0.9421, 1.5603],
[1.0510, 1.7290, 0.0000, 0.0000, 0.8565],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])
tensor([[0.0000, 0.0000, 0.4722, 1.4095, 0.0000],
[0.0416, 0.0000, 0.1726, 1.3800, 1.3193],
[0.0000, 0.3401, 0.6550, 0.0000, 0.0000],
[1.0510, 1.7290, 1.5515, 0.0000, 0.0000],
[0.6388, 0.0000, 0.0000, 1.0122, 0.0000]])
tensor([[0.0000, 0.0000, 0.4722, 0.0000, 1.2689],
[0.0416, 0.0000, 0.0000, 1.3800, 0.0000],
[0.0000, 0.0000, 0.6550, 0.0000, 1.5603],
[0.0000, 0.0000, 1.5515, 1.4596, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])Process finished with exit code 0
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_38603174/article/details/110631064