对pytorch中x = x.view(x.size(0), -1) 的理解说明

时间:2022-11-22 16:52:17

在pytorch的CNN代码中经常会看到

?
1
x.view(x.size(0), -1)

首先,在pytorch中的view()函数就是用来改变tensor的形状的,例如将2行3列的tensor变为1行6列,其中-1表示会自适应的调整剩余的维度

?
1
2
3
4
5
6
7
a = torch.Tensor(2,3)
print(a)
# tensor([[0.0000, 0.0000, 0.0000],
#    [0.0000, 0.0000, 0.0000]])
 
print(a.view(1,-1))
# tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])

在CNN中卷积或者池化之后需要连接全连接层,所以需要把多维度的tensor展平成一维,x.view(x.size(0), -1)就实现的这个功能

?
1
2
3
4
5
6
7
8
9
10
def forward(self,x):
  x=self.pre(x)
  x=self.layer1(x)
  x=self.layer2(x)
  x=self.layer3(x)
  x=self.layer4(x)
    
  x=F.avg_pool2d(x,7)
  x=x.view(x.size(0),-1)
  return self.fc(x)

卷积或者池化之后的tensor的维度为(batchsize,channels,x,y),其中x.size(0)指batchsize的值,最后通过x.view(x.size(0), -1)将tensor的结构转换为了(batchsize, channels*x*y),即将(channels,x,y)拉直,然后就可以和fc层连接了

补充:pytorch中view的用法(重构张量)

view在pytorch中是用来改变张量的shape的,简单又好用。

pytorch中view的用法通常是直接在张量名后用.view调用,然后放入自己想要的shape。如

?
1
tensor_name.view(shape)

Example:

1. 直接用法:

?
1
2
3
4
5
6
>>> x = torch.randn(4, 4)
>>> x.size()
torch.Size([4, 4])
>>> y = x.view(16)
>>> y.size()
torch.Size([16])

2. 强调某一维度的尺寸:

?
1
2
3
>>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions
>>> z.size()
torch.Size([2, 8])

3. 拉直张量:

(直接填-1表示拉直, 等价于tensor_name.flatten())

?
1
2
3
>>> y = x.view(-1)
>>> y.size()
torch.Size([16])

4. 做维度变换时不改变内存排列

?
1
2
3
4
5
6
7
8
9
10
11
>>> a = torch.randn(1, 2, 3, 4)
>>> a.size()
torch.Size([1, 2, 3, 4])
>>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension
>>> b.size()
torch.Size([1, 3, 2, 4])
>>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory
>>> c.size()
torch.Size([1, 3, 2, 4])
>>> torch.equal(b, c)
False

注意最后的False,在张量b和c是不等价的。从这里我们可以看得出来,view函数如其名,只改变“看起来”的样子,不会改变张量在内存中的排列。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://blog.csdn.net/TYUT_xiaoming/article/details/100799527