2D image convolution

时间:2022-09-04 10:02:01

在学习cnn的过程中,对convolution的概念真的很是模糊,本来在学习图像处理的过程中,已对convolution有所了解,它与correlation是有不同的,因为convolution = correlation + filp over in both horizontal + vertical

但在CNN中,明明只是进行了correlation,但却称之为convolution,实在不解

下面, 将图像处理中的convolution重新整理记录

因为网络关于这部分的解释很多,这里直接借用其他 参考

“A convolution is done by multiplying a pixel's and its neighboring pixels color value by a matrix”, 这里的matrix就是convoluiton kernel (usually a small matrix of numbers)

这里假设图像是3*3,kernel也是3*3,实际计算中,有时为了使得卷积结果与原图像一致,会对原图像进行padding操作

原图像x:

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0
x(0,0) x(0,1) x(0,2) x(0,3) x(0,4)
x(1,0) x(1,1) x(1,2) x(1,3) x(1,4)
x(2,0) x(2,1) x(2,2) x(2,3) x(2,4)
x(3,0) x(3,1) x(3,2)  x(3,3) x(3,4)
x(4,0) x(4,1) x(4,2) x(4,3) x(4,4)

卷积核h:

-1 -2 -1
0 0 0
1 2 1
h(1,1) h(1,2) h(1,3)
h(2,1) h(2,2) h(2,3)
h(3,1) h(3,2) h(3,3)

具体的过程为:

将h先上下翻转,再左右翻转,然后,与x进行correlation运算

1 2 1
0 0 0
-1 -2 -1
h(3,3) h(3,2) h(3,1)
h(2,3) h(2,2) h(2,1)
h(1,1) h(1,2) h(1,1)

输出结果y:3*3

x(0,0) x(0,1) x(0,2) x(0,3) x(0,4)
x(1,0) x(1,1) x(1,2) x(1,3) x(1,4)
x(2,0) x(2,1) x(2,2) x(2,3) x(2,4)
x(3,0) x(3,1) x(3,2)  x(3,3) x(3,4)
x(4,0) x(4,1) x(4,2) x(4,3) x(4,4)

依次覆盖,对应元素相乘

h(3,3) h(3,2) h(3,1)
h(2,3) h(2,2) h(2,1)
h(1,1) h(1,2) h(1,1)

y(1,1) = h(3,3) *x(0,0) + h(3,2) *x(0,1) + h(3,1) *x(0,2) +

     h(2,3) *x(1,0) + h(2,2) *x(1,1) + h(2,1) *x(1,2) +

     h(1,3) *x(2,0) + h(1,2) *x(2,1) + h(1,1) *x(2,2)  

其他元素类似

:In image processing, a kernelconvolution matrix, or mask is a small matrix useful for blurring, sharpening, embossing, edge-detection, and more. This is accomplished by means of convolution between a kernel and an image.

2D image convolution的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. 转置卷积Transposed Convolution

    转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...

  3. TensorflowTutorial_二维数据构造简单CNN

    使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积- ...

  4. Intel DAAL AI加速——神经网络

    # file: neural_net_dense_batch.py #================================================================= ...

  5. tensorflow: a Implementation of rotation ops (旋转的函数实现方法)

    tensorflow 旋转矩阵的函数实现方法 关键字: rot90, tensorflow 1. 背景 在做数据增强的操作过程中, 很多情况需要对图像旋转和平移等操作, 针对一些特殊的卷积(garbo ...

  6. gdc skin

    https://www.gdcvault.com/play/1024410/Achieving-High-Quality-Low-Cost 这篇是教美术怎么用做地形那种方法 复用贴图 做skin的 做 ...

  7. Winograd Convolution 推导 - 从1D到2D

    Winograd Convolution 推导 - 从1D到2D 姚伟峰 http://www.cnblogs.com/Matrix_Yao/ Winograd Convolution 推导 - 从1 ...

  8. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  9. Deep Learning 学习随记(七)Convolution and Pooling --卷积和池化

    图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接 ...

随机推荐

  1. JS-DOM对象知识点汇总(慕课)

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>D ...

  2. mysqlimport 导入文件到数据库命令

    mysqlimport -h 172.16.145.125 -u ocetl -pocetl test  --fields-terminated-by='|' '/home/ocetl/tmp_use ...

  3. 为什么选择MongoDB&quest;

    为什么选择MongoDB? 阅读目录 开始 为啥用MongoDB? 原来的架构 新需求 如何解决? 新思路 选型条件 一些候选者 最初的选择 代价 新的候选者 重新选择 胆子大一点 胆子再大一点 胆子 ...

  4. python数组查找算法---bisect二分查找插入

    1 实例 这个模块只有几个函数, 一旦决定使用二分搜索时,立马要想到使用这个模块 [python] view plaincopyprint? import bisect L = [1,3,3,6,8, ...

  5. JTemplates 的使用

    注意事项:一定要放在Jquery的页面加载完成事件内  : $(function{}); <script src="~/Js/jquery-2.1.0.js">< ...

  6. 什么是Referer?Referer的作用?空Referer是怎么回事?

    什么是Referer? Referer是 HTTP请求header 的一部分,当浏览器(或者模拟浏览器行为)向web 服务器发送请求的时候,头信息里有包含 Referer.比如我在www.sojson ...

  7. GUI学习之九——QLineEdit的学习总结

    我们在前面学习了各种按钮控件,从这一章开始就是各种输入控件的学习. 首先要用的就是QLineEdit——单行编辑器, 一描述 QLineEdit是一个单行文本编辑器,允许用户输入和编辑单行纯文本.自带 ...

  8. vue的data的数据进行指定赋值,用于筛选条件的清空,或者管理系统添加成功后给部分数据赋值为空

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. docker 4 docker的三要素

    docker三要素 镜像,容器,仓库 镜像 docker镜像(image)就是一个只读的模板,镜像可以用来创建docker容器,一个镜像可以创建很多个容器 容器 docker利用容器(containe ...

  10. 树&&num;183&semi;二叉查找树ADT(二叉搜索树&sol;排序树)

    1.定义 对于每个节点X,它的左子树中所有的项的值小于X的值,右子树所有项的值大于X的值. 如图:任意一个节点,都满足定义,其左子树的所有值小于它,右子树的所有值大于它. 2.平均深度 在大O模型中, ...