Java实现Shazam声音识别算法的实例代码

时间:2022-09-02 19:59:25

shazam算法采用傅里叶变换将时域信号转换为频域信号,并获得音频指纹,最后匹配指纹契合度来识别音频。

1、audiosystem获取音频

奈奎斯特-香农采样定理告诉我们,为了能捕获人类能听到的声音频率,我们的采样速率必须是人类听觉范围的两倍。人类能听到的声音频率范围大约在20hz到20000hz之间,所以在录制音频的时候采样率大多是44100hz。这是大多数标准mpeg-1 的采样率。44100这个值最初来源于索尼,因为它可以允许音频在修改过的视频设备上以25帧(pal)或者30帧( ntsc)每秒进行录制,而且也覆盖了专业录音设备的20000hz带宽。所以当你在选择录音的频率时,选择44100hz就好了。

定义音频格式:

?
1
2
3
4
5
6
7
8
9
public static float samplerate = 44100;
public static int samplesizeinbits = 16;
public static int channels = 2; // double
public static boolean signed = true; // indicates whether the data is signed or unsigned
public static boolean bigendian = true; // indicates whether the audio data is stored in big-endian or little-endian order
public audioformat getformat() {
  return new audioformat(samplerate, samplesizeinbits, channels, signed,
      bigendian);
}

调用麦克风获取音频,保存到out中

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public static bytearrayoutputstream out = new bytearrayoutputstream();1
   try {
     audioformat format = smartauto.getformat(); // fill audioformat with the settings
     dataline.info info = new dataline.info(targetdataline.class, format);
     starttime = new date().gettime();
     system.out.println(starttime);
     smartauto.line = (targetdataline) audiosystem.getline(info);
     smartauto.line.open(format);
     smartauto.line.start();
     new fileanalysis().getdatatoout("");
     while (smartauto.running) {
       checktime(starttime);
     }
     smartauto.line.stop();
     smartauto.line.close();
   } catch (throwable e) {
     e.printstacktrace();
   }

获取到的out数据需要通过傅里叶变换,从时域信号转换为频域信号。

傅里叶变换

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public complex[] fft(complex[] x) {
    int n = x.length;
    // 因为exp(-2i*n*pi)=1,n=1时递归原点
    if (n == 1){
      return x;
    }
    // 如果信号数为奇数,使用dft计算
    if (n % 2 != 0) {
      return dft(x);
    }
    // 提取下标为偶数的原始信号值进行递归fft计算
    complex[] even = new complex[n / 2];
    for (int k = 0; k < n / 2; k++) {
      even[k] = x[2 * k];
    }
    complex[] evenvalue = fft(even);
    // 提取下标为奇数的原始信号值进行fft计算
    // 节约内存
    complex[] odd = even;
    for (int k = 0; k < n / 2; k++) {
      odd[k] = x[2 * k + 1];
    }
    complex[] oddvalue = fft(odd);
    // 偶数+奇数
    complex[] result = new complex[n];
    for (int k = 0; k < n / 2; k++) {
      // 使用欧拉公式e^(-i*2pi*k/n) = cos(-2pi*k/n) + i*sin(-2pi*k/n)
      double p = -2 * k * math.pi / n;
      complex m = new complex(math.cos(p), math.sin(p));
      result[k] = evenvalue[k].add(m.multiply(oddvalue[k]));
      // exp(-2*(k+n/2)*pi/n) 相当于 -exp(-2*k*pi/n),其中exp(-n*pi)=-1(欧拉公式);
      result[k + n / 2] = evenvalue[k].subtract(m.multiply(oddvalue[k]));
    }
    return result;
  }

计算out的频域值

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
private void setfftresult(){
   byte audio[] = smartauto.out.tobytearray();
   final int totalsize = audio.length;
   system.out.println("totalsize = " + totalsize);
   int chenksize = 4;
   int amountpossible = totalsize/chenksize;
   //when turning into frequency domain we'll need complex numbers:
   smartauto.results = new complex[amountpossible][];
   dftoperate dfaoperate = new dftoperate();
   //for all the chunks:
   for(int times = 0;times < amountpossible; times++) {
     complex[] complex = new complex[chenksize];
     for(int i = 0;i < chenksize;i++) {
       //put the time domain data into a complex number with imaginary part as 0:
       complex[i] = new complex(audio[(times*chenksize)+i], 0);
     }
     //perform fft analysis on the chunk:
     smartauto.results[times] = dfaoperate.fft(complex);
   }
   system.out.println("results = " + smartauto.results.tostring());
 }

总结

以上所述是小编给大家介绍的java实现shazam声音识别算法的实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!

原文链接:https://blog.csdn.net/llhhzz1989/article/details/82585957