Java 并发编程:Callable和Future

时间:2021-07-30 02:54:57

Java 并发编程系列文章

Java 并发基础——线程安全性

Java 并发编程——Callable+Future+FutureTask

java 并发编程——Thread 源码重新学习

java并发编程——通过ReentrantLock,Condition实现银行存取款

Java并发编程——BlockingQueue

Java 并发编程——Executor框架和线程池原理


项目中经常有些任务需要异步(提交到线程池中)去执行,而主线程往往需要知道异步执行产生的结果,这时我们要怎么做呢?用runnable是无法实现的,我们需要用callable实现。

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future; public class AddTask implements Callable<Integer> { private int a,b; public AddTask(int a, int b) {
this.a = a;
this.b = b;
} @Override
public Integer call() throws Exception {
Integer result = a + b;
return result;
} public static void main(String[] args) throws InterruptedException, ExecutionException {
ExecutorService executor = Executors.newSingleThreadExecutor();
//JDK目前为止返回的都是FutureTask的实例
Future<Integer> future = executor.submit(new AddTask(1, 2));
Integer result = future.get();// 只有当future的状态是已完成时(future.isDone() = true),get()方法才会返回
}
}

Callable接口

Callable接口Runable接口可谓是兄弟关系,只不过Callable是带返回值的。

public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}

Future 接口

接口函数及含义 :public interface Future<V>

boolean  cancel(boolean mayInterruptIfRunning)

取消当前执行的任务,如果已经执行完毕或者已经被取消/由于某种原因不能被取消 则取消任务失败。

参数mayInterruptIfRunning: 当任务正在执行,如果参数为true ,则尝试中断任务,否则让任务继续执行知道结束。

 
boolean isCancelled()
Returns {@code true} if this task was cancelled before it completed
* normally.

boolean isDone();
/**
* Returns {@code true} if this task completed.
*
* Completion may be due to normal termination, an exception, or
* cancellation -- in all of these cases, this method will return
* {@code true}.
*
* @return {@code true} if this task completed
*/

V get() throws InterruptedException, ExecutionException;

/**
* Waits if necessary for the computation to complete, and then
* retrieves its result.
*
* @return the computed result
* @throws CancellationException if the computation was cancelled
* @throws ExecutionException if the computation threw an
* exception
* @throws InterruptedException if the current thread was interrupted
* while waiting
*/
由注释可以看出,当没有执行完成时,需要等待任务执行完成了才会将计算结果返回。

V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;

Waits if necessary for at most the given time for the computation
* to complete, and then retrieves its result, if available.

如果等待的时间超过设置的时间则会报 TimeoutException异常

FutureTask

public class FutureTask<V> implements RunnableFuture<V>

由定义可以看出它实现了RunnableFuture接口,那么这个接口又是什么呢?看下面的接口定义,其实很简单

public interface RunnableFuture<V> extends Runnable, Future<V> {
/**
* Sets this Future to the result of its computation
* unless it has been cancelled.
*/
void run();
}

再回到FutureTask,它其实就是实现了Runnable和Future接口,FutureTask的执行是 状态转换的过程,源码中有七种状态如下:

  * Possible state transitions:
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;

当FutureTask刚刚被创建时,它的状态是NEW,其它状态查看源码。

其它成员变量:

 /** The underlying callable; nulled out after running */
private Callable<V> callable;
/** The result to return or exception to throw from get() */
private Object outcome; // non-volatile, protected by state reads/writes
/** The thread running the callable; CASed during run() */
private volatile Thread runner;
/** Treiber stack of waiting threads */
private volatile WaitNode waiters;

callable是待执行的任务,FutureTask 的 run()函数中执行callable中的任务。

outcome : 是callable的执行结果,当正常执行完成后会将结果set到outcome中

runner:是执行callable 的线程

WaitNode : 是的受阻塞的线程链表,当cancel一个任务后,阻塞的线程会被唤醒。

构造函数:

public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
} public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}

从构造函数可以看出,不光可以通过callable构造FutureTask还可以通过Runnable接口转化为callable来构造。关键函数为黄色标记部分,Executors中的实现源码如下:

/**
* A callable that runs given task and returns given result.
*/
private static final class RunnableAdapter<T> implements Callable<T> {
private final Runnable task;
private final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}

这里面不懂result到底有什么意义,明明就是预先设置好的。

其它具体的方法说明这里不再细说,里面用到了很多sun.misc.Unsafe中的方法以及其他SDK底层接口,后续有时间再学习。下面贴出了整个源码及说明

public class FutureTask<V> implements RunnableFuture<V> {
/*
* Revision notes: This differs from previous versions of this
* class that relied on AbstractQueuedSynchronizer, mainly to
* avoid surprising users about retaining interrupt status during
* cancellation races. Sync control in the current design relies
* on a "state" field updated via CAS to track completion, along
* with a simple Treiber stack to hold waiting threads.
*
* Style note: As usual, we bypass overhead of using
* AtomicXFieldUpdaters and instead directly use Unsafe intrinsics.
*/ /**
* The run state of this task, initially NEW. The run state
* transitions to a terminal state only in methods set,
* setException, and cancel. During completion, state may take on
* transient values of COMPLETING (while outcome is being set) or
* INTERRUPTING (only while interrupting the runner to satisfy a
* cancel(true)). Transitions from these intermediate to final
* states use cheaper ordered/lazy writes because values are unique
* and cannot be further modified.
*
* Possible state transitions:
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after running */
private Callable<V> callable;
/** 用来存储任务执行结果或者异常对象,根据任务state在get时候选择返回执行结果还是抛出异常 */
private Object outcome; // non-volatile, protected by state reads/writes
/** 当前运行Run方法的线程 */
private volatile Thread runner;
/** Treiber stack of waiting threads */
private volatile WaitNode waiters; /**
* Returns result or throws exception for completed task.
*
* @param s completed state value
*/
@SuppressWarnings("unchecked")
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
} /**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Callable}.
*
* @param callable the callable task
* @throws NullPointerException if the callable is null
*/
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
} /**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Runnable}, and arrange that {@code get} will return the
* given result on successful completion.
*
* @param runnable the runnable task
* @param result the result to return on successful completion. If
* you don't need a particular result, consider using
* constructions of the form:
* {@code Future<?> f = new FutureTask<Void>(runnable, null)}
* @throws NullPointerException if the runnable is null
*/
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
//判断任务是否已取消(异常中断、取消等)
public boolean isCancelled() {
return state >= CANCELLED;
}
/**
判断任务是否已结束(取消、异常、完成、NORMAL都等于结束)
**
public boolean isDone() {
return state != NEW;
} /**
mayInterruptIfRunning用来决定任务的状态。
true : 任务状态= INTERRUPTING = 5。如果任务已经运行,则强行中断。如果任务未运行,那么则不会再运行
false:CANCELLED = 4。如果任务已经运行,则允许运行完成(但不能通过get获取结果)。如果任务未运行,那么则不会再运行
**/
public boolean cancel(boolean mayInterruptIfRunning) {
if (state != NEW)
return false;
if (mayInterruptIfRunning) {
if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING))
return false;
Thread t = runner;
if (t != null)
t.interrupt();
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state
}
else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED))
return false;
finishCompletion();
return true;
} /**
* @throws CancellationException {@inheritDoc}
*/
public V get() throws InterruptedException, ExecutionException {
int s = state;
//如果任务未彻底完成,那么则阻塞直至任务完成后唤醒该线程
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
} /**
* @throws CancellationException {@inheritDoc}
*/
public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
} /**
* Protected method invoked when this task transitions to state
* {@code isDone} (whether normally or via cancellation). The
* default implementation does nothing. Subclasses may override
* this method to invoke completion callbacks or perform
* bookkeeping. Note that you can query status inside the
* implementation of this method to determine whether this task
* has been cancelled.
*/
protected void done() { } /**
该方法在FutureTask里只有run方法在任务完成后调用。
主要保存任务执行结果到成员变量outcome 中,和切换任务执行状态。
由该方法可以得知:
COMPLETING : 任务已执行完成(也可能是异常完成),但还未设置结果到成员变量outcome中,也意味着还不能get
NORMAL : 任务彻底执行完成
**/
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
} /**
* Causes this future to report an {@link ExecutionException}
* with the given throwable as its cause, unless this future has
* already been set or has been cancelled.
*
* <p>This method is invoked internally by the {@link #run} method
* upon failure of the computation.
*
* @param t the cause of failure
*/
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
} /**
由于实现了Runnable接口的缘故,该方法可由执行线程所调用。
**/
public void run() {
//只有当任务状态=new时才被运行继续执行
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
//调用Callable的Call方法
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
} /**
如果该任务在执行过程中不被取消或者异常结束,那么该方法不记录任务的执行结果,且不修改任务执行状态。
所以该方法可以重复执行N次。不过不能直接调用,因为是protected权限。
**/
protected boolean runAndReset() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return false;
boolean ran = false;
int s = state;
try {
Callable<V> c = callable;
if (c != null && s == NEW) {
try {
c.call(); // don't set result
ran = true;
} catch (Throwable ex) {
setException(ex);
}
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
return ran && s == NEW;
} /**
* Ensures that any interrupt from a possible cancel(true) is only
* delivered to a task while in run or runAndReset.
*/
private void handlePossibleCancellationInterrupt(int s) {
// It is possible for our interrupter to stall before getting a
// chance to interrupt us. Let's spin-wait patiently.
if (s == INTERRUPTING)
while (state == INTERRUPTING)
Thread.yield(); // wait out pending interrupt // assert state == INTERRUPTED; // We want to clear any interrupt we may have received from
// cancel(true). However, it is permissible to use interrupts
// as an independent mechanism for a task to communicate with
// its caller, and there is no way to clear only the
// cancellation interrupt.
//
// Thread.interrupted();
} /**
* Simple linked list nodes to record waiting threads in a Treiber
* stack. See other classes such as Phaser and SynchronousQueue
* for more detailed explanation.
*/
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
} /**
该方法在任务完成(包括异常完成、取消)后调用。删除所有正在get获取等待的节点且唤醒节点的线程。和调用done方法和置空callable.
**/
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
} done(); callable = null; // to reduce footprint
} /**
阻塞等待任务执行完成(中断、正常完成、超时)
**/
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
/**
这里的if else的顺序也是有讲究的。
1.先判断线程是否中断,中断则从队列中移除(也可能该线程不存在于队列中)
2.判断当前任务是否执行完成,执行完成则不再阻塞,直接返回。
3.如果任务状态=COMPLETING,证明该任务处于已执行完成,正在切换任务执行状态,CPU让出片刻即可
4.q==null,则证明还未创建节点,则创建节点
5.q节点入队
6和7.阻塞
**/ if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
} int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
} /**
* Tries to unlink a timed-out or interrupted wait node to avoid
* accumulating garbage. Internal nodes are simply unspliced
* without CAS since it is harmless if they are traversed anyway
* by releasers. To avoid effects of unsplicing from already
* removed nodes, the list is retraversed in case of an apparent
* race. This is slow when there are a lot of nodes, but we don't
* expect lists to be long enough to outweigh higher-overhead
* schemes.
*/
private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
for (;;) { // restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null)
pred = q;
else if (pred != null) {
pred.next = s;
if (pred.thread == null) // check for race
continue retry;
}
else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
q, s))
continue retry;
}
break;
}
}
} // Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long stateOffset;
private static final long runnerOffset;
private static final long waitersOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = FutureTask.class;
stateOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("state"));
runnerOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("runner"));
waitersOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("waiters"));
} catch (Exception e) {
throw new Error(e);
}
} }

FutureTask简单应用:

public class FutureTaskTest {

    public static void main(String[] args) {
test();
} private static void test() {
Task task = new Task();
FutureTask futureTask = new FutureTask(task);
//step3:将FutureTask提交给Thread执行
Thread thread1 = new Thread(futureTask);
thread1.setName("task thread 1");
thread1.start(); //step4:获取执行结果,由于get()方法可能会阻塞当前调用线程,如果子任务执行时间不确定,最好在子线程中获取执行结果
try {
// boolean result = (boolean) futureTask.get();
boolean result = (boolean) futureTask.get(5, TimeUnit.SECONDS);
System.out.println("result:" + result);
} catch (InterruptedException e) {
System.out.println("守护线程阻塞被打断...");
e.printStackTrace();
} catch (ExecutionException e) {
System.out.println("执行任务时出错...");
e.printStackTrace();
} catch (TimeoutException e) {
System.out.println("执行超时...");
futureTask.cancel(true);
e.printStackTrace();
} catch (CancellationException e) {
//如果线程已经cancel了,再执行get操作会抛出这个异常
System.out.println("future已经cancel了...");
e.printStackTrace();
}
} private static final long SLEEP_TIME = 100; static class Task implements Callable<Boolean> { @Override
public Boolean call() throws Exception {
try {
for (int i = 0; i < 10; i++) {
System.out.println("curr threadName=" + Thread.currentThread().getName() + " i=" + i);
//模拟耗时操作
Thread.sleep(SLEEP_TIME);
}
} catch (InterruptedException e) {
System.out.println(" is interrupted when calculating, will stop...");
return false; // 注意这里如果不return的话,线程还会继续执行,所以任务超时后在这里处理结果然后返回
}
return true;
}
}
}

1. 上述代码的执行结果为:

curr threadName=task thread 1 i=0
curr threadName=task thread 1 i=1
curr threadName=task thread 1 i=2
curr threadName=task thread 1 i=3
curr threadName=task thread 1 i=4
result:true

上述结果可以看出,get方法为阻塞执行,需要等到任务执行才会有返回值。

2. 当把SLEEP_TIME改为1500时,get方法回超时,进入timeout的异常处理分支,其结果如下。

curr threadName=task thread 1 i=0
curr threadName=task thread 1 i=1
curr threadName=task thread 1 i=2
curr threadName=task thread 1 i=3
执行超时...
is interrupted when calculating, will stop...
java.util.concurrent.TimeoutException
at java.util.concurrent.FutureTask.get(FutureTask.java:205)
at com.iflytek.drip.selflearn2.ConcurrentTest.FutureTaskTest.test(FutureTaskTest.java:30)
at com.iflytek.drip.selflearn2.ConcurrentTest.FutureTaskTest.main(FutureTaskTest.java:16)

可以看出超时后,任务并不会继续执行,因为cancel方法传了true。(这里能够被cancel,是因为runable处于sleep状态,如果是一直执行的任务则无法被interrupt)

3. 当调用cancel传值为false时,执行结果如下:

curr threadName=task thread 1 i=0
curr threadName=task thread 1 i=1
curr threadName=task thread 1 i=2
curr threadName=task thread 1 i=3
执行超时...
java.util.concurrent.TimeoutException
at java.util.concurrent.FutureTask.get(FutureTask.java:205)
at com.iflytek.drip.selflearn2.ConcurrentTest.FutureTaskTest.test(FutureTaskTest.java:30)
at com.iflytek.drip.selflearn2.ConcurrentTest.FutureTaskTest.main(FutureTaskTest.java:16)
curr threadName=task thread 1 i=4

虽然执行了cancel,但是任务并没有被中断。

参考:

http://lixiaohui.iteye.com/blog/2319738