柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)

时间:2022-08-31 11:09:38

柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同。

在进行cumulative probability统计(如下图)的时候,你怎么知道组之间是否有显著性差异?有人首先想到单因素方差分析或双尾检验(2 tailed TEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显著性差异。

柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)
Kolmogorov-Smirnov test原理:寻找最大距离(Distance), 所以常简称为D法。 适用于大样本。 KS test checks if two independent distributions are similar or different, by generating cumulative probability plots for two distributions and finding the distance along the y-axis for a given x values between the two curves. From all the distances calculated for each x value, the maximum distance is searched.
如何分析结果呢?This maximum distance or maximum difference is then plugged into KS probability function to calculate the probability value.  The lower the probability value is the less likely the two distributions are similar.  Conversely, the higher or more close to 1 the value is the more similar the two distributions are.极端情况:如果P值为1的话,说明两给数据基本相同,如果P值无限接近0,说明两组数据差异性极大。
 
有一个网站可以进行在线的统计,你只需要输入数据就可以了。地址如下:http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html
当然还有更多的软件支持这个统计,如SPSS,SAS,MiniAnalysis,Clampfit10
根据软件统计出来后给出的结果决定有没有显著性差异,如果D max值>D 0.05。则认为有显著性差异。D 0.05的经验算法:1.36/SQRT(N) 其中SQRT为平方要,N为样本数。D 0.01经验算法1.64/SQRT(N) 。当然最准确的办法还是去查KS检定表。不过大多数软件如CLAMPFIT,MINIANALYSIS统计出来的结果都是直接有P值。根据这个值(alpha=0.05)就可以断定有没有差异了。

在统计学中,柯尔莫可洛夫-斯米洛夫检验基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同。

在进行累计概率(cumulative probability)统计的时候,你怎么知道组之间是否有显著性差异?有人首先想到单因素方差分析或双尾检验(2 tailedTEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显著性差异。

分类:

1、Single sample Kolmogorov-Smirnov goodness-of-fit hypothesis test.

采用柯尔莫诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。指令如下:

>> H = KSTEST(X,CDF,ALPHA,TAIL) % X为待检测样本,CDF可选:如果空缺,则默认为检测标准正态分布;

如果填写两列的矩阵,第一列是x的可能的值,第二列是相应的假设累计概率分布函数的值G(x)。ALPHA是显著性水平(默认0.05)。TAIL是表示检验的类型(默认unequal,不平衡)。还有larger,smaller可以选择。

如果,H=1 则否定无效假设; H=0,不否定无效假设(在alpha水平上)

例如,

x = -2:1:4
x =
  -2  -1   0   1   2   3   4

[h,p,k,c] = kstest(x,[],0.05,0)
h =
   0
p =
   0.13632
k =
   0.41277
c =
   0.48342

The test fails to reject the null hypothesis that the values come from a standard normal distribution.

2、Two-sample Kolmogorov-Smirnov test

检验两个数据向量之间的分布的。

>>[h,p,ks2stat] = kstest2(x1,x2,alpha,tail)

% x1,x2都为向量,ALPHA是显著性水平(默认0.05)。TAIL是表示检验的类型(默认unequal,不平衡)。

例如,x = -1:1:5
y = randn(20,1);
[h,p,k] = kstest2(x,y)
h =
     0
p =
    0.0774
k =
    0.5214

wiki翻译起来太麻烦,还有可能曲解本意,最好看原版解释。

In statistics, the KolmogorovSmirnov test (K–S test) is a form of minimum distance estimation used as a nonparametric test of equality of one-dimensional probability distributions used to compare a sample with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test). The Kolmogorov–Smirnov statistic quantifies a distance between theempirical distribution function of the sample and the cumulative distribution function of the reference distribution, or between the empirical distribution functions of two samples. The null distribution of this statistic is calculated under the null hypothesis that the samples are drawn from the same distribution (in the two-sample case) or that the sample is drawn from the reference distribution (in the one-sample case). In each case, the distributions considered under the null hypothesis are continuous distributions but are otherwise unrestricted.

The two-sample KS test is one of the most useful and general nonparametric methods for comparing two samples, as it is sensitive to differences in both location and shape of the empirical cumulative distribution functions of the two samples.

The Kolmogorov–Smirnov test can be modified to serve as a goodness of fit test. In the special case of testing for normality of the distribution, samples are standardized and compared with a standard normal distribution. This is equivalent to setting the mean and variance of the reference distribution equal to the sample estimates, and it is known that using the sample to modify the null hypothesis reduces the power of a test. Correcting for this bias leads to theLilliefors test. However, even Lilliefors' modification is less powerful than the Shapiro–Wilk test or Anderson–Darling test for testing normality.[1]

柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)的更多相关文章

  1. matlab-罗曼诺夫斯基准则剔除粗大值

    罗曼诺夫斯基准则原理  罗曼诺夫斯基准则又称 t检验准则,其特点是首先删除一个可疑的的测得值,然后按 t分布检验被剔除的测量值是否含有粗大误差 罗曼诺夫斯基准则  1)选取合适的显著度a,选择合适的数 ...

  2. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  3. AC日记——【模板】分块/带修改莫队(数颜色) 洛谷 P1903

    [模板]分块/带修改莫队(数颜色) 思路: 带修改莫队: (伏地膜xxy): 代码: #include <bits/stdc++.h> using namespace std; #defi ...

  4. 洛谷P3237 米特运输 &lbrack;HNOI2014&rsqb; hash&sol;二进制分解

    正解:hash/二进制分解 解题报告: 传送门! umm首先提取下题意趴QAQ 大概是说给一棵树,每个点有一个权值,要求修改一些点的权值,使得同一个父亲的儿子权值相同,且父亲的权值必须是所有儿子权值之 ...

  5. x的奇幻之旅 &lpar;史蒂夫&&num;183&semi;斯托加茨 著&rpar;

    第1部分 数字 第1章 数学:从企鹅的"鱼"订单到无穷大 (已看) 第2章 一组组石头与加减乘除运算 (已看) 第3章 "敌人的敌人就是朋友“与"负负得正&qu ...

  6. 洛谷P3237 米特运输

    题目链接 题意: 中文题,挺好理解.就是让节点的权值等于各子节点权值之和,然后每个子节点的权值相等,原本每个点有一个权值,通过最少次的修改(可以修改成小数)使其满足要求. 分析: 题意一旦读明白,题什 ...

  7. POJ1236或洛谷2746或洛谷2812 Network of Schools

    POJ原题链接 洛谷2746原题链接 洛谷2812(加强版)原题链接 显然在强连通分量里的所有学校都能通过网络得到软件,所以我们可以用\(tarjan\)求出强连通分量并缩点,统计缩点后每个点的入度和 ...

  8. 【洛谷】【洛谷月赛】4月月赛Round 1&sol;2

    洛谷月赛“月”来“月”丧了,一月更比一月丧,做得我十分不“月”…… 4月的两轮月赛,都只会T1,就写一下吧,等待后续更新…… 先看看Round1的T1: [R1T1] 网址:点我 [题意简述] 给定一 ...

  9. 洛谷P3379lca&comma;HDU2586&comma;洛谷P1967货车运输&comma;倍增lca&comma;树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

随机推荐

  1. centos安装mono

    1.查看mono最新版本 http://download.mono-project.com/sources/mono 2.安装依赖环境 sudo yum install cmake automake ...

  2. hdu 2027统计元音

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2027 思路:主要考察gets()函数用法,能够接受输入的空格,如果用%s或是cin>>st ...

  3. 关于Android2&period;X系统自定义图片圆角BUG的解决

    今天在做项目的时候遇到的一个问题. 预期的效果是这样的:

  4. 关于如何来构造一个String类

    今天帮着一位大二的学弟写了一个String的类,后来一想这个技术点,也许不是什么难点,但是还是简单的记录一些吧! 为那些还在路上爬行的行者,剖析一些基本的实现..... 内容写的过于简单,没有涉及到其 ...

  5. Lucene&period;Net 2&period;3&period;1开发介绍 —— 三、索引(三)

    原文:Lucene.Net 2.3.1开发介绍 -- 三.索引(三) 3.Field配置所产生的效果 索引数据,简单的代码,只要两个方法就搞定了,而在索引过程中用到的一些类里最简单,作用也不小的就是F ...

  6. Android&colon;刚6瓶啤酒4两56度白酒下肚&comma;竟然20分钟做了一手机版站点 &excl;

    刚6瓶啤酒4两56度白酒下肚,竟然20分钟不到时间做了一手机版站点 !人有多大潜力你知道吗? 大家有兴趣的能够用手机或微信打开 http://xh.yunxunmi.com/  看看俺这酒后之做! 很 ...

  7. Sanatorium

    Sanatorium time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  8. koa 中间件

    什么是 Koa 的中间件 通俗的讲:中间件就是匹配路由之前或者匹配路由完成做的一系列的操作,我们就可以 把它叫做中间件. 在express中间件(Middleware)是一个函数,它可以访问请求对象( ...

  9. python语法小应用---列表和元组

    声明:本文章为参考总结CSDN上知识点所获,只是用来总结自己学习而用,如有侵权,会删除! 列表(list): 列表就像一个线性容器,但是比C++的 lis t扩展多得多 列表里的元素可以是相同类型,也 ...

  10. Java FileReader使用相对路径读取文件

    Java FileReader使用相对路径读取文件 觉得有用的话,欢迎一起讨论相互学习~Follow Me 在进行编程时需要时常更换主机进行测试,如果使用绝对路径则需要经常更改,为此使用相对路径是一个 ...