Query on a tree——树链剖分整理

时间:2022-08-31 08:54:05

树链剖分整理

树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护。

通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中size[v]是以v为根的子树的节点个数,全部由重边组成的路径是重路径,根据论文上的证明,任意一点到根的路径上存在不超过logn条轻边和logn条重路径。

这样我们考虑用数据结构来维护重路径上的查询,轻边直接查询。

通常用来维护的数据结构是线段树,splay较少见。

具体步骤

预处理

第一遍dfs

求出树每个结点的深度dep[x],其为根的子树大小siz[x]

,其重儿子,以及祖先的信息fa[x]表示x的直接父亲,

第二遍dfs

根节点为起点,向下拓展构建重链

选择最大的一个子树的根继承当前重链

其余节点,都以该节点为起点向下重新拉一条重链

搞出top[x],top[x]表示x所在链的端点

给每个结点分配一个位置编号,每条重链就相当于一段区间,用数据结构去维护。

搞出pos[x],pos[x]表示在线段树中以x为下端点的标号(一般不维护边)

把所有的重链首尾相接,放到同一个数据结构上,然后维护这一个整体即可

修改操作

1、单独修改一个点的权值    //例题中没用

根据其编号直接在数据结构中修改就行了。

2、修改点u和点v的路径上的权值

(1)若u和v在同一条重链上

直接用数据结构修改pos[u]至pos[v]间的值。

(2)若u和v不在同一条重链上

一边进行修改,一边将u和v往同一条重链上靠,然后就变成了情况(1)。

查询操作

查询操作的分析过程同修改操作

题目不同,选用不同的数据结构来维护值,通常有线段树和splay

  

例题、SPOJ 305:Query on a tree
题意:10000个点的树,有边权(<=1000000),支持两个操作:
1、CHANGE i ti 把第i条变的权改为ti
2、QUERY a b 查询a,b两点间路径上的最大边
20组数据
#include<cstdio>
#include<cstring>
#include<iostream>
#define lc k<<1
#define rc k<<1|1
#define IN inline
#define R register
using namespace std;
const int N=1e4+;
IN int read(){
R int x=;R bool f=;
R char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
}
struct node{
int u,v,w,next;
}e[N<<];
int n,T,tot,num,head[N],fa[N],top[N],pos[N],dep[N],siz[N],son[N];
int a[N<<];
void add(int x,int y,int z){
e[++tot].u=x;
e[tot].v=y;
e[tot].w=z;
e[tot].next=head[x];
head[x]=tot;
}
void dfs(int u,int f,int de){
fa[u]=f;dep[u]=de;siz[u]=;
for(int i=head[u],v;i;i=e[i].next){
v=e[i].v;
if(v!=f){
dfs(v,u,de+);
siz[u]+=siz[v];
if(!son[u]||siz[son[u]]<siz[v]){
son[u]=v;
}
}
}
}
void getpos(int u,int tp){
top[u]=tp;
pos[u]=++num;
if(!son[u]) return ;
getpos(son[u],tp);
for(int i=head[u],v;i;i=e[i].next){
v=e[i].v;
if(v!=son[u]&&v!=fa[u]){
getpos(v,v);
}
}
}
void change(int k,int l,int r,int pos,int val){
if(l==r){
a[k]=val;
return;
}
int mid=l+r>>;
if(pos<=mid) change(lc,l,mid,pos,val);
else change(rc,mid+,r,pos,val);
a[k]=max(a[lc],a[rc]);
}
int query(int k,int l,int r,int x,int y){
if(l==x&&y==r) return a[k];
int mid=l+r>>;
if(y<=mid) return query(lc,l,mid,x,y);
else if(x>mid) return query(rc,mid+,r,x,y);
else return max(query(lc,l,mid,x,mid),query(rc,mid+,r,mid+,y));
}
int find(int u,int v){
int tp1=top[u],tp2=top[v],ans=;
while(tp1!=tp2){
if(dep[tp1]<dep[tp2]){
swap(tp1,tp2);
swap(u,v);
}
ans=max(ans,query(,,num,pos[tp1],pos[u]));
u=fa[tp1];tp1=top[u];
}
if(u==v) return ans;
if(dep[u]>dep[v]) swap(u,v);
return max(ans,query(,,num,pos[u]+,pos[v]));
}
void Cl(){
tot=;num=;
memset(a,,sizeof a);
memset(fa,,sizeof fa);
memset(head,,sizeof head);
memset(pos,,sizeof pos);
memset(top,,sizeof top);
memset(son,,sizeof son);
memset(dep,,sizeof dep);
}
int main(){
for(T=read();T--;){
Cl();
n=read();
for(int i=,x,y,z;i<n;i++){
x=read();y=read();z=read();
add(x,y,z);add(y,x,z);
}
dfs(,,);
getpos(,);
for(int i=,t=(n-)*;i<t;i+=){
if(dep[e[i].v]<dep[e[i].u]) swap(e[i].u,e[i].v);
change(,,num,pos[e[i].v],e[i].w);
}
char ch[];
for(int x,y;;){
scanf("%s",ch);
if(ch[]=='D') break;
if(ch[]=='C'){
x=read();y=read();
change(,,num,pos[e[x*-].v],y);
}
else{
x=read();y=read();
printf("%d\n",find(x,y));
}
}
}
return ;
}

 

Query on a tree——树链剖分整理的更多相关文章

  1. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  2. spoj QTREE - Query on a tree&lpar;树链剖分&plus;线段树单点更新,区间查询&rpar;

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  3. SPOJ QTREE Query on a tree 树链剖分&plus;线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

  4. spoj 375 Query on a tree &lpar;树链剖分&rpar;

    Query on a tree You are given a tree (an acyclic undirected connected graph) with N nodes, and edges ...

  5. spoj 375 QTREE - Query on a tree 树链剖分

    题目链接 给一棵树, 每条边有权值, 两种操作, 一种是将一条边的权值改变, 一种是询问u到v路径上最大的边的权值. 树链剖分模板. #include <iostream> #includ ...

  6. SPOJ QTREE Query on a tree ——树链剖分 线段树

    [题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #incl ...

  7. SPOJ 375 Query on a tree 树链剖分模板

    第一次写树剖~ #include<iostream> #include<cstring> #include<cstdio> #define L(u) u<&l ...

  8. SPOJ QTREE Query on a tree --树链剖分

    题意:给一棵树,每次更新某条边或者查询u->v路径上的边权最大值. 解法:做过上一题,这题就没太大问题了,以终点的标号作为边的标号,因为dfs只能给点分配位置,而一棵树每条树边的终点只有一个. ...

  9. Query on a tree 树链剖分 &lbrack;模板&rsqb;

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

随机推荐

  1. java动态代理的2种实现方式

    java的动态代理在接java的api上有说明,这里就不写了.我理解的代理: 对特定接口中特定方法的功能进行扩展,这就是代理.代理是通过代理实例关联的调用处理程序对象调用方法. 下面通过一个例子看一下 ...

  2. &lbrack;Cocoa设计模式&rsqb; 动态创建

    Cocoa利用底层Objective-C运行时的很多特性,包括能够创建在应用程序编译时不存在的类的实例并在运行时动态加载和链接新类.诸如Ruby, Perl, Python之类的脚本语言就利用这种技术 ...

  3. Flexbox实现垂直水平居中

    Flexbox(伸缩盒)是CSS3中新增的特性,利用这个属性可以解决页面中的居中问题.只需要3行代码就可以实现,不需要设置元素的尺寸,能够自适应页面. 这个方法只能在现代浏览器上有效,IE10+.ch ...

  4. hdu2044java

    一只小蜜蜂... Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. new function

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  6. TableEdit&amp&semi;nbsp&semi;UI&lowbar;10

    1.tableView的编辑的步骤:  1.让tableView处于编辑状态,(默认所有的cell都处于编辑状态,默认下的编辑样式是删除) 2.设置哪些cell可以编辑  3.设置编辑的样式(删除,插 ...

  7. 关于H5页面在iPhoneX适配(转)

    ​1.  iPhoneX的介绍 屏幕尺寸 我们熟知的iPhone系列开发尺寸概要如下: △ iPhone各机型的开发尺寸 转化成我们熟知的像素尺寸: △ 每个机型的多维度尺寸 倍图其实就是像素尺寸和开 ...

  8. &colon;&colon;selection 选择器

    使被选中的文本成为红色:::selection { color:#ff0000; } ::-moz-selection { color:#ff0000; }

  9. &lpar;一&rpar;jQuery EasyUI 的EasyLoader载入原理

    1.第一次看了官网的demo.引用的是EasyLoader.js文件,而不是引用jquery.easyui.min.js文件,我就有疑问了,百度一下. jQuery EasyUI是一款基于JQuery ...

  10. MinDos--操作系统

    MinDos--操作系统 总结 : 本次实现的是功能是为 (1)自行定义系统提示符 (2)自定义命令集(8-10个) (3)用户输入HELP以查找命令的帮助 (4)列出命令的功能,区分内部还是外部命令 ...