高速公路 [HAOI2012] [线段树]

时间:2023-11-10 08:28:14

Description

Y901高速公路是一条重要的交通纽带,*部门建设初期的投入以及使用期间的养护费用都不低,因此*在这条高速公路上设立了许多收费站。
Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行驶到i+1(或从i+1行驶到i)需要收取Vi的费用。高速路刚建成时所有的路段都是免费的。
*部门根据实际情况,会不定期地对连续路段的收费标准进行调整,根据政策涨价或降价。
无聊的小A同学总喜欢研究一些稀奇古怪的问题,他开车在这条高速路上行驶时想到了这样一个问题:对于给定的l,r(l<r),在第l个到第r个收费站里等概率随机取出两个不同的收费站a和b,那么从a行驶到b将期望花费多少费用呢?

Input

第一行2个正整数N,M,表示有N个收费站,M次调整或询问
接下来M行,每行将出现以下两种形式中的一种
C l r v 表示将第l个收费站到第r个收费站之间的所有道路的通行费全部增加v
Q l r 表示对于给定的l,r,要求回答小A的问题
所有C与Q操作中保证1<=l l<r,在第l个到第r个收费站里等概率随机取出两个不同的收费站a和b,那么从a行驶到b将期望花费多少费用呢?

Output

对于每次询问操作回答一行,输出一个既约分数
若答案为整数a,输出a/1

Sample Input

4 5
C 1 4 2
C 1 2 -1
Q 1 2
Q 2 4
Q 1 4

Sample Output

1/1
8/3
17/6

Hint

数据约束

所有C操作中的v的绝对值不超过10000

在任何时刻任意道路的费用均为不超过10000的非负整数

N,M<=1e5

Solution
对于一次询问,第i条边的贡献为 wi*(i-L+1)*(R-i+1)

可以这么理解,在i的左边(包括自身)选择起点,在i的右边(包括自身)选择终点,相乘即为组合的个数

然后

高速公路 [HAOI2012] [线段树]

我们就可以看出,用线段树分别维护三个值:S0:∑wi , S1:∑(wi*i) , S2:∑(wi*i2)即可

高速公路 [HAOI2012] [线段树](S2漏乘了一个val)

这个该死的线段树调了我两个小时。以后打线段树还是要小心一点慢点打 = =

Code

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register int
#define rep(i,a,b) for(RG i=a;i<=b;i++)
#define per(i,a,b) for(RG i=a;i>=b;i--)
#define inf (1<<30)
#define maxn 100005
#define ll long long
#define ls pos<<1
#define rs pos<<1|1
#define L t[pos].l
#define R t[pos].r
#define mid ((t[pos].l+t[pos].r)>>1)
#define cal0(x,y) x*y
#define cal1(x,y,z,w) (x+y)*z*w/2ll
#define cal2(x,y,z) (y*(y+1ll)*(2ll*y+1ll)-x*(x-1ll)*(2ll*x-1ll))*z/6ll //bug
using namespace std;
int n,m;
struct T{
int l,r;
ll s0,s1,s2,tag;
}t[maxn<<];
struct Dat{
ll a0,a1,a2;
inline Dat operator + (const Dat x)const{
return (Dat){a0+x.a0,a1+x.a1,a2+x.a2};
}
};
inline int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void build(int pos,int l,int r)
{
t[pos].l=l,t[pos].r=r;
if(l==r) return;
build(ls,l,mid);build(rs,mid+,r);
} inline void pushdown(int pos)
{
t[ls].tag+=t[pos].tag,t[rs].tag+=t[pos].tag;
ll len1=t[ls].r-t[ls].l+,len2=t[rs].r-t[rs].l+;//bug t[ls].s0+=cal0(len1,t[pos].tag),
t[ls].s1+=cal1(t[ls].l,t[ls].r,len1,t[pos].tag),
t[ls].s2+=cal2(t[ls].l,t[ls].r,t[pos].tag); t[rs].s0+=cal0(len2,t[pos].tag),
t[rs].s1+=cal1(t[rs].l,t[rs].r,len2,t[pos].tag),
t[rs].s2+=cal2(t[rs].l,t[rs].r,t[pos].tag); t[pos].tag=;
} void update(int pos,int l,int r,ll val)
{
if(l<=L&&R<=r)
{
ll len=R-L+;
t[pos].s0+=cal0(len,val),
t[pos].s1+=cal1(L,R,len,val),
t[pos].s2+=cal2(L,R,val);
t[pos].tag+=val;
return;
}
if(t[pos].tag) pushdown(pos);
if(l<=mid) update(ls,l,r,val);//bug
if(r>mid) update(rs,l,r,val);//bug
t[pos].s0=t[ls].s0+t[rs].s0,
t[pos].s1=t[ls].s1+t[rs].s1,
t[pos].s2=t[ls].s2+t[rs].s2;
} Dat query(int pos,int l,int r)
{
if(l<=t[pos].l&&t[pos].r<=r)
return (Dat){t[pos].s0,t[pos].s1,t[pos].s2};
if(t[pos].tag) pushdown(pos);
Dat ans=(Dat){,,};
if(l<=mid) ans=query(ls,l,r);
if(r>mid) ans=ans+query(rs,l,r);
return ans;
} ll gcd(ll a,ll b){return (!(a%b)?b:gcd(b,a%b));} int main()
{
n=read(),m=read();
build(,,n-);
char opt[];
register ll l,r,v;
rep(i,,m)
{
scanf("%s",opt);
if(opt[]=='C')
{
l=read(),r=read()-,v=read();
update(,l,r,v);
}
else
{
l=read(),r=read()-;
Dat ans=query(,l,r);
ll up=ans.a0*(r-l-l*r+1ll)+ans.a1*(l+r)-ans.a2;
ll down=(r-l+1ll)*(r-l+2ll)/2ll;
ll gd=gcd(up,down);
up/=gd,down/=gd;
printf("%lld/%lld\n",up,down);
}
}
return ;
}