环境
1
2
3
|
pip install opencv - python = = 3.4 . 2.16
pip install opencv - contrib - python = = 3.4 . 2.16
|
理论
克里斯·哈里斯(Chris Harris)和迈克·史蒂芬斯(Mike Stephens)在1988年的论文《组合式拐角和边缘检测器》中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器。
函数:cv2.cornerHarris(),cv2.cornerSubPix()
示例代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import cv2
import numpy as np
filename = 'molecule.png'
img = cv2.imread(filename)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2 , 3 , 0.04 )
#result is dilated for marking the corners, not important
dst = cv2.dilate(dst, None )
# Threshold for an optimal value, it may vary depending on the image.
img[dst> 0.01 * dst. max ()] = [ 0 , 0 , 255 ]
cv2.imshow( 'dst' ,img)
if cv2.waitKey( 0 ) & 0xff = = 27 :
cv2.destroyAllWindows()
|
原图
输出图
SubPixel精度的角落
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
import cv2
import numpy as np
filename = 'molecule.png'
img = cv2.imread(filename)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# find Harris corners
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2 , 3 , 0.04 )
dst = cv2.dilate(dst, None )
ret, dst = cv2.threshold(dst, 0.01 * dst. max (), 255 , 0 )
dst = np.uint8(dst)
# find centroids
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)
# define the criteria to stop and refine the corners
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100 , 0.001 )
corners = cv2.cornerSubPix(gray,np.float32(centroids),( 5 , 5 ),( - 1 , - 1 ),criteria)
# Now draw them
res = np.hstack((centroids,corners))
res = np.int0(res)
img[res[:, 1 ],res[:, 0 ]] = [ 0 , 0 , 255 ]
img[res[:, 3 ],res[:, 2 ]] = [ 0 , 255 , 0 ]
cv2.imwrite( 'subpixel5.png' ,img)
|
输出图
参考
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u012325865/article/details/103044562