Division
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others)
Total Submission(s): 2664 Accepted Submission(s): 1050
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that
and the total cost of each subset is minimal.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
2
3 2
1 2 4
4 2
4 7 10 1
Case 1: 1
Case 2: 18
/*分析:
首先对于斜率dp我有个总结:
斜率dp一般应用于连续的一段或几段求最值
既1~k,k+1~j,j+1~...这样分段而不能跳开来求
仅仅有连续段才干用单调队列维护最值然后
dp[i]=dp[j]+(j+1~i)的值。 对于本题:
题目要求m个子数组的最值。而子数组中的元素不一定是原数组连续的
所以肯定不能直接用斜率优化,经过分析能够发现先进行从小到大排序
然后连续的m段最值就是能够求最值了。 所以:先对原数组进行从小到大排序
dp[i][j]表示以i结尾的j段的最值
从k+1~i作为一段
则:dp[i][j]=dp[k][j-1]+(s[i]-s[k+1])^2
如今就是怎样求到这个k使得dp[i][j]最小
如果k2<=k1<i
若:dp[k1][j-1]+(s[i]-s[k1+1])^2 <= dp[k2][j-1]+(s[i]-s[k2+1])^2
=>dp[k1][j-1]+s[k1+1]^2 - (dp[k2][j-1]+s[k2+1]^2) / (2s[k1+1]-2s[k2+1]) <= s[i]
所以:
y1 = dp[k1][j-1]+s[k1+1]^2
x1 = 2s[k1+1]
y2 = dp[k2][j-1]+s[k2+1]^2
x2 = 2s[k2+1] =>(y1 - y2)/(x1 - x2) <= i
单调队列维护下凸折线
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#include <limits.h>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX = 10000+10;
int n,m,index;
int q[MAX];
int s[MAX],dp[2][MAX];//採用滚动数组 int GetY(int k1,int k2){
return dp[index^1][k1]+s[k1+1]*s[k1+1] - (dp[index^1][k2]+s[k2+1]*s[k2+1]);
} int GetX(int k1,int k2){
return 2*(s[k1+1]-s[k2+1]);
} int DP(){
int head=0,tail=1;
index=0;
for(int i=1;i<=n;++i)dp[index][i]=INF;//初始化
//dp[index][0]=0;
for(int i=1;i<=m;++i){
index=index^1;
head=tail=0;
q[tail++]=0;
for(int j=1;j<=n;++j){
//dp[index^1][0]=(i-1)*(s[j]-s[1])*(s[j]-s[1]);
while(head+1<tail && GetY(q[head+1],q[head]) <= GetX(q[head+1],q[head])*s[j])++head;
while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2]) <= GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
q[tail++]=j;
int k=q[head];
dp[index][j]=dp[index^1][k]+(s[j]-s[k+1])*(s[j]-s[k+1]);
}
}
return dp[index][n];
} int main(){
int t,num=0;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%d",s+i);
sort(s+1,s+1+n);
printf("Case %d: %d\n",++num,DP());
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。
hdu3480二维斜率优化DP的更多相关文章
-
2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)
传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...
-
斜率优化DP学习笔记
先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...
-
BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
-
[CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
-
bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)
Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...
-
【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
-
HDU2829 Lawrence —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-2829 Lawrence Time Limit: 2000/1000 MS (Java/Others) Memory L ...
-
BZOJ 3675 APIO2014 序列切割 斜率优化DP
题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...
-
【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
随机推荐
-
delphi TFileStream.create
Value Meaning fmCreate Create a file with the given name. If a file with the given name exists, op ...
-
两个基于C++/Qt的开源WEB框架
1.tufao 项目地址: https://github.com/vinipsmaker/tufao 主页: http://vinipsmaker.github.io/tufao/ 介绍: Tufão ...
-
在 WinCe 平台读写 ini 文件
在上篇文章开发 windows mobile 上的今日插件时,我发现 wince 平台上不支持例如 GetPrivateProfileString 等相关 API 函数.在网络上我并没有找到令我满意的 ...
-
[转载] 2 分钟读懂大数据框架 Hadoop 和 Spark 的异同
转载自https://www.oschina.net/news/73939/hadoop-spark-%20difference 谈到大数据,相信大家对Hadoop和Apache Spark这两个名字 ...
-
花10分钟搞懂开源框架吧 - 【NancyFx.Net】
NancyFx是什么? Nancy是一个轻量级的独立的框架,下面是官网的一些介绍: Nancy 是一个轻量级用于构建基于 HTTP 的 Web 服务,基于 .NET 和 Mono 平台,框架的目标是保 ...
-
Codeforces 455A Boredom (线性DP)
<题目链接> 题目大意:给定一个序列,让你在其中挑选一些数,如果你选了x,那么你能够得到x分,但是该序列中所有等于x-1和x+1的元素将全部消失,问你最多能够得多少分. 解题分析:从小到大 ...
-
ios之快速领会VFL的demo
在网上看到一篇blog,超正!快速领会ios的vfl. 这里贴上blog的地址. http://www.thinkandbuild.it/learn-to-love-auto-layout-prog ...
-
http_build_query用法
http_build_query (PHP 5) http_build_query -- 生成 url-encoded 之后的请求字符串描述string http_build_query ( arra ...
-
[Leetcode] Swap nodes in pairs 成对交换结点
Given a linked list, swap every two adjacent nodes and return its head. For example,Given1->2-> ...
-
Python编程-编码、文件处理、函数
一.字符编码补充知识点 1.文本编辑器存取文件的原理(nodepad++,pycharm,word) 打开编辑器就打开了启动了一个进程,是在内存中的,所以在编辑器编写的内容也都是存放与内存中的,断电后 ...