hadoop文本转换为序列文件

时间:2022-12-26 17:55:26

在以前使用hadoop的时候因为mahout里面很多都要求输入文件时序列文件,所以涉及到把文本文件转换为序列文件或者序列文件转为文本文件(因为当时要分析mahout的源码,所以就要看到它的输入文件是什么,文本比较好看其内容)。一般这个有两种做法,其一:按照《hadoop权威指南》上面的方面直接读出序列文件然后写入一个文本;其二,编写一个job任务,直接设置输出文件的格式,这样也可以把序列文件读成文本(个人一般采用这样方法)。时隔好久,今天又重新试了下,居然不行了?,比如,我要编写一个把文本转为序列文件的java程序如下:

package mahout.fansy.canopy.transformdata;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable; public class Text2VectorWritable extends AbstractJob{ @Override
public int run(String[] arg0) throws Exception {
addInputOption();
addOutputOption();
if (parseArguments(arg0) == null) {
return -1;
}
Path input=getInputPath();
Path output=getOutputPath();
Configuration conf=getConf();
Job job=new Job(conf,"text2vectorWritable with input:"+input.getName());
// job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
job.setMapperClass(Text2VectorWritableMapper.class);
job.setMapOutputKeyClass(Writable.class);
job.setMapOutputValueClass(VectorWritable.class);
job.setNumReduceTasks(0);
job.setJarByClass(Text2VectorWritable.class); FileInputFormat.addInputPath(job, input);
SequenceFileOutputFormat.setOutputPath(job, output);
if (!job.waitForCompletion(true)) {
throw new InterruptedException("Canopy Job failed processing " + input);
}
return 0;
} public static class Text2VectorWritableMapper extends Mapper<Writable,Text,Writable,VectorWritable>{
public void map(Writable key,Text value,Context context)throws IOException,InterruptedException{
String[] str=value.toString().split(",");
Vector vector=new RandomAccessSparseVector(str.length);
for(int i=0;i<str.length;i++){
vector.set(i, Double.parseDouble(str[i]));
}
VectorWritable va=new VectorWritable(vector);
context.write(key, va);
}
} }

这样在运行的时候老是提示说 我的Map的value的类型不是Text,不管我设置为什么类型都会是这样的情况。后来我就想会不会是map的输出时Text的格式?,然后我就把上面的程序加入了Reducer,如下:

package mahout.fansy.canopy.transformdata;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable; public class Text2VectorWritableCopy extends AbstractJob{ @Override
public int run(String[] arg0) throws Exception {
addInputOption();
addOutputOption();
if (parseArguments(arg0) == null) {
return -1;
}
Path input=getInputPath();
Path output=getOutputPath();
Configuration conf=getConf();
Job job=new Job(conf,"text2vectorWritableCopy with input:"+input.getName());
// job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
job.setMapperClass(Text2VectorWritableMapper.class);
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(VectorWritable.class);
job.setReducerClass(Text2VectorWritableReducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(VectorWritable.class);
job.setJarByClass(Text2VectorWritableCopy.class); FileInputFormat.addInputPath(job, input);
SequenceFileOutputFormat.setOutputPath(job, output);
if (!job.waitForCompletion(true)) {
throw new InterruptedException("Canopy Job failed processing " + input);
}
return 0;
} public static class Text2VectorWritableMapper extends Mapper<LongWritable,Text,LongWritable,VectorWritable>{
public void map(LongWritable key,Text value,Context context)throws IOException,InterruptedException{
String[] str=value.toString().split(",");
Vector vector=new RandomAccessSparseVector(str.length);
for(int i=0;i<str.length;i++){
vector.set(i, Double.parseDouble(str[i]));
}
VectorWritable va=new VectorWritable(vector);
context.write(key, va);
}
} public static class Text2VectorWritableReducer extends Reducer<LongWritable,VectorWritable,LongWritable,VectorWritable>{
public void reduce(LongWritable key,Iterable<VectorWritable> values,Context context)throws IOException,InterruptedException{
for(VectorWritable v:values){
context.write(key, v);
}
}
} }

然后在运行,就可以了。

不过关于map的输出是否一定是text格式的,还有待论证。

分享,快乐,成长

转载请注明出处:http://blog.csdn.net/fansy1990