Machine Learning 神器 - sklearn

时间:2021-07-26 23:14:50

Sklearn 官网提供了一个流程图, 蓝色圆圈内是判断条件,绿色方框内是可以选择的算法:

Machine Learning 神器 -  sklearn

从 START 开始,首先看数据的样本是否 >50,小于则需要收集更多的数据。

由图中,可以看到算法有四类,分类,回归,聚类,降维

其中 分类和回归是监督式学习,即每个数据对应一个 label。 聚类 是非监督式学习,即没有 label。 另外一类是 降维,当数据集有很多很多属性的时候,可以通过 降维 算法把属性归纳起来。例如 20 个属性只变成 2 个,注意,这不是挑出 2 个,而是压缩成为 2 个,它们集合了 20 个属性的所有特征,相当于把重要的信息提取的更好,不重要的信息就不要了。

然后看问题属于哪一类问题,是分类还是回归,还是聚类,就选择相应的算法。 当然还要考虑数据的大小,例如 100K 是一个阈值。

可以发现有些方法是既可以作为分类,也可以作为回归,例如 SGD

Regression回归算法:

参考链接:https://www.zhihu.com/question/38121173    https://blog.csdn.net/fenxishichengzhang/article/details/53968592
# linear 普通线性回归 : 使用经验风险最小化=损失函数(平方损失)
# Ridge 岭回归 : 使用结构风险最小化=损失函数(平方损失)+ 正则化(L2范数) --- 为了解决multicolinearity
# Lasso 套索(适合稀疏数据集) : 使用结构风险最小化=损失函数(平方损失)+ 正则化(L1范数) --- 为了解决variable selection

Classification分类算法:

Clustering聚类算法:

参考链接:https://blog.csdn.net/loveliuzz/article/details/78783773

#  K-Means:k代表类别
# Gentroid Initialisation Mathod: 质心初始化方法 Precompute Distances: 预计算距离

Machine Learning 神器 -  sklearn

传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类。

1. 获取数据

1.1 导入sklearn数据集

  sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型

首先呢,要想使用sklearn中的数据集,必须导入datasets模块:

from sklearn import datasets

sklearn中数据集以及调用方式

Machine Learning 神器 -  sklearn

Machine Learning 神器 -  sklearn

以iris的数据集为例:

iris = datasets.load_iris() #导入数据集
x = iris.data # 获得其特征向量
y = iris.target # 获得样本label

1.2 创建数据集

  你除了可以使用sklearn自带的数据集,还可以自己去创建训练样本,具体用法参见《Dataset loading utilities》,这里我们简单介绍一些,sklearn中的samples generator包含的大量创建样本数据的方法:

Machine Learning 神器 -  sklearn   Machine Learning 神器 -  sklearn

下面我们拿分类问题的样本生成器举例子:

from sklearn.datasets.samples_generator import make_classification

X, y = make_classification(n_samples=6, n_features=5, n_informative=2,
n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0,
random_state=20) # n_samples:指定样本数
# n_features:指定特征数
# n_classes:指定几分类
# random_state:随机种子,使得随机状可重
>>> for x_,y_ in zip(X,y):
print(y_,end=': ')
print(x_) 0: [-0.6600737 -0.0558978 0.82286793 1.1003977 -0.93493796]
1: [ 0.4113583 0.06249216 -0.90760075 -1.41296696 2.059838 ]
1: [ 1.52452016 -0.01867812 0.20900899 1.34422289 -1.61299022]
0: [-1.25725859 0.02347952 -0.28764782 -1.32091378 -0.88549315]
0: [-3.28323172 0.03899168 -0.43251277 -2.86249859 -1.10457948]
1: [ 1.68841011 0.06754955 -1.02805579 -0.83132182 0.93286635]

2. 数据预处理

  数据预处理阶段是机器学习中不可缺少的一环,它会使得数据更加有效的被模型或者评估器识别。下面我们来看一下sklearn中有哪些平时我们常用的函数:

from sklearn import preprocessing

2.1 数据归一化

  为了使得训练数据的标准化规则与测试数据的标准化规则同步,preprocessing中提供了很多Scaler:

data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data) # 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来

2.2 正则化(normalize

  当你想要计算两个样本的相似度时必不可少的一个操作,就是正则化。其思想是:首先求出样本的p-范数,然后该样本的所有元素都要除以该范数,这样最终使得每个样本的范数都为1。

>>> X = [[ 1., -1.,  2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])

2.3 one-hot编码

  one-hot编码是一种对离散特征值的编码方式,在LR模型中常用到,用于给线性模型增加非线性能力。

data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()

3. 数据集拆分

  在得到训练数据集时,通常我们经常会把训练数据集进一步拆分成训练集和验证集,这样有助于我们模型参数的选取。

# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签 test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本 train_size: 同test_size random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True) 返回
---
分割后的列表,长度=2*len(arrays),
  (train-test split)
"""

4. 定义模型

  在这一步我们首先要分析自己数据的类型,搞清出你要用什么模型来做,然后我们就可以在sklearn中定义模型了。sklearn为所有模型提供了非常相似的接口,这样使得我们可以更加快速的熟悉所有模型的用法。在这之前我们先来看看模型的常用属性和功能:

# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test) # 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc

4.1 线性回归

from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False,
copy_X=True, n_jobs=1)
"""
参数
---
fit_intercept:是否计算截距。False-模型没有截距
normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
n_jobs:指定线程数
"""

Machine Learning 神器 -  sklearn

4.2 逻辑回归LR

from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’,
verbose=0, warm_start=False, n_jobs=1) """参数
---
penalty:使用指定正则化项(默认:l2)
dual: n_samples > n_features取False(默认)
C:正则化强度的反,值越小正则化强度越大
n_jobs: 指定线程数
random_state:随机数生成器
fit_intercept: 是否需要常量
"""

4.3 朴素贝叶斯算法NB

from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
alpha:平滑参数
fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""

4.4 决策树DT

from sklearn import tree
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort=False)
"""参数
---
criterion :特征选择准则gini/entropy
max_depth:树的最大深度,None-尽量下分
min_samples_split:分裂内部节点,所需要的最小样本树
min_samples_leaf:叶子节点所需要的最小样本数
max_features: 寻找最优分割点时的最大特征数
max_leaf_nodes:优先增长到最大叶子节点数
min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""

4.5 支持向量机SVM

from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""参数
---
C:误差项的惩罚参数C
gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""

4.6 k近邻算法KNN

from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
n_neighbors: 使用邻居的数目
n_jobs:并行任务数
"""

4.7 多层感知机(神经网络)

from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
hidden_layer_sizes: 元祖
activation:激活函数
solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
alpha:L2惩罚(正则化项)参数。
"""

5. 模型评估与选择篇

5.1 交叉验证

from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
model:拟合数据的模型
cv : k-fold
scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、'neg_log_loss'等等
"""

5.2 检验曲线

  使用检验曲线,我们可以更加方便的改变模型参数,获取模型表现。

from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
model:用于fit和predict的对象
X, y: 训练集的特征和标签
param_name:将被改变的参数的名字
param_range: 参数的改变范围
cv:k-fold 返回值
---
train_score: 训练集得分(array)
test_score: 验证集得分(array)
"""

例子

6. 保存模型

  最后,我们可以将我们训练好的model保存到本地,或者放到线上供用户使用,那么如何保存训练好的model呢?主要有下面两种方式:

6.1 保存为pickle文件

import pickle

# 保存模型
with open('model.pickle', 'wb') as f:
pickle.dump(model, f) # 读取模型
with open('model.pickle', 'rb') as f:
model = pickle.load(f)
model.predict(X_test)

6.2 sklearn自带方法joblib

from sklearn.externals import joblib

# 保存模型
joblib.dump(model, 'model.pickle') #载入模型
model = joblib.load('model.pickle')