【题意】
n行m列网格放k个石子。有多少种方法?要求第一行,第一列,最后一行,最后一列必须有石子。
【题解】
利用容斥原理。可以转到求“第一行、第一列、最后一行、最后一列没有石子”的方案数。
枚举各个集合的组合时可以借助二进制进行枚举
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,sec,k;
int C[][];
const int mod=;
void pre()
{
memset(C,,sizeof(C));
for(int i=;i<=;i++)
C[i][]=; for(int i=;i<=;i++)
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;//预处理好所有c
}
int main()
{
pre();
scanf("%d",&sec);
for(int z=;z<=sec;z++)
{
scanf("%d%d%d",&n,&m,&k);
int ans=;
for(int i=;i<;i++)
{
int b=,r=n,c=m;
if(i&){r--;b++;}
if(i&){r--;b++;}
if(i&){c--;b++;}
if(i&){c--;b++;}
if(b%==)ans=(ans+C[r*c][k])%mod;
else ans=(ans+mod-C[r*c][k])%mod;
}
printf("Case %d: %d\n",z,ans);
}
}