YOLOv5改进系列(17)——更换IoU之MPDIoU(ELSEVIER 2023|超越WIoU、EIoU等|实测涨点)

时间:2025-04-02 09:18:14
  • def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False,
  • MPDIoU=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
  • # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
  • # Get the coordinates of bounding boxes
  • if xywh: # transform from xywh to xyxy
  • (x1, y1, w1, h1), (x2, y2, w2, h2) = (4, -1), (4, -1)
  • w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
  • b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
  • b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
  • else: # x1, y1, x2, y2 = box1
  • b1_x1, b1_y1, b1_x2, b1_y2 = (4, -1)
  • b2_x1, b2_y1, b2_x2, b2_y2 = (4, -1)
  • w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
  • w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
  • # Intersection area
  • inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
  • (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
  • # Union Area
  • union = w1 * h1 + w2 * h2 - inter + eps
  • if scale:
  • self = WIoU_Scale(1 - (inter / union))
  • # IoU
  • # iou = inter / union # ori iou
  • iou = torch.pow(inter / (union + eps), alpha) # alpha iou
  • if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU or MPDIoU:
  • cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
  • ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
  • if CIoU or DIoU or EIoU or SIoU or WIoU or MPDIoU: # Distance or Complete IoU /abs/1911.08287v1
  • c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal squared
  • rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (
  • b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha # center dist ** 2
  • if CIoU: # /Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
  • v = (4 / ** 2) * ((w2 / h2) - (w1 / h1)).pow(2)
  • with torch.no_grad():
  • alpha_ciou = v / (v - iou + (1 + eps))
  • if Focal:
  • return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),
  • gamma) # Focal_CIoU
  • else:
  • return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
  • elif EIoU:
  • rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
  • rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
  • cw2 = torch.pow(cw ** 2 + eps, alpha)
  • ch2 = torch.pow(ch ** 2 + eps, alpha)
  • if Focal:
  • return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),
  • gamma) # Focal_EIou
  • else:
  • return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
  • elif MPDIoU:
  • cw2 = torch.pow(cw ** 2 + eps, alpha)
  • ch2 = torch.pow(ch ** 2 + eps, alpha)
  • d12 = ((b2_x1 - b1_x1) - (b2_y1 - b1_y1)) ** 2
  • d22 = ((b2_x2 - b1_x2) - (b2_y2 - b1_y2)) ** 2
  • return iou - ((d12+d22)/(cw2+ ch2))
  • elif SIoU:
  • # SIoU Loss /pdf/2205.
  • s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
  • s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
  • sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
  • sin_alpha_1 = torch.abs(s_cw) / sigma
  • sin_alpha_2 = torch.abs(s_ch) / sigma
  • threshold = pow(2, 0.5) / 2
  • sin_alpha = (sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
  • angle_cost = ((sin_alpha) * 2 - / 2)
  • rho_x = (s_cw / cw) ** 2
  • rho_y = (s_ch / ch) ** 2
  • gamma = angle_cost - 2
  • distance_cost = 2 - (gamma * rho_x) - (gamma * rho_y)
  • omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
  • omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
  • shape_cost = torch.pow(1 - (-1 * omiga_w), 4) + torch.pow(1 - (-1 * omiga_h), 4)
  • if Focal:
  • return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(
  • inter / (union + eps), gamma) # Focal_SIou
  • else:
  • return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
  • elif WIoU:
  • if Focal:
  • raise RuntimeError("WIoU do not support Focal.")
  • elif scale:
  • return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * (
  • (rho2 / c2)), iou # WIoU /abs/2301.10051
  • else:
  • return iou, ((rho2 / c2)) # WIoU v1
  • if Focal:
  • return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma) # Focal_DIoU
  • else:
  • return iou - rho2 / c2 # DIoU
  • c_area = cw * ch + eps # convex area
  • if Focal:
  • return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),
  • gamma) # Focal_GIoU /pdf/1902.
  • else:
  • return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU /pdf/1902.
  • if Focal:
  • return iou, torch.pow(inter / (union + eps), gamma) # Focal_IoU
  • else:
  • return iou # IoU
  • class WIoU_Scale:
  • ''' monotonous: {
  • None: origin v1
  • True: monotonic FM v2
  • False: non-monotonic FM v3
  • }
  • momentum: The momentum of running mean'''
  • iou_mean = 1.
  • monotonous = False
  • _momentum = 1 - 0.5 ** (1 / 7000)
  • _is_train = True
  • def __init__(self, iou):
  • = iou
  • self._update(self)
  • @classmethod
  • def _update(cls, self):
  • if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
  • cls._momentum * ().mean().item()
  • @classmethod
  • def _scaled_loss(cls, self, gamma=1.9, delta=3):
  • if isinstance(, bool):
  • if :
  • return (() / self.iou_mean).sqrt()
  • else:
  • beta = () / self.iou_mean
  • alpha = delta * torch.pow(gamma, beta - delta)
  • return beta / alpha
  • return 1