class Conv2d_BN():
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
groups=1, bn_weight_init=1, resolution=-10000):
super().__init__()
self.add_module('c', .Conv2d(
a, b, ks, stride, pad, dilation, groups, bias=False))
self.add_module('bn', .BatchNorm2d(b))
.constant_(, bn_weight_init)
.constant_(, 0)
def fuse(self):
c, bn = self._modules.values()
w = / (bn.running_var + )**0.5
w = * w[:, None, None, None]
b = - bn.running_mean * / \
(bn.running_var + )**0.5
m = .Conv2d((1) * , (
0), [2:], stride=, padding=, dilation=, groups=,
device=)
.copy_(w)
.copy_(b)
return m
class Residual():
def __init__(self, m, drop=0.):
super().__init__()
= m
= drop
def forward(self, x):
if and > 0:
return x + (x) * ((0), 1, 1, 1,
device=).ge_().div(1 - ).detach()
else:
return x + (x)
def fuse(self):
if isinstance(, Conv2d_BN):
m = ()
assert( == m.in_channels)
identity = ([0], [1], 1, 1)
identity = (identity, [1,1,1,1])
+= ()
return m
elif isinstance(, .Conv2d):
m =
assert( != m.in_channels)
identity = ([0], [1], 1, 1)
identity = (identity, [1,1,1,1])
+= ()
return m
else:
return self
class RepVGGDW():
def __init__(self, ed) -> None:
super().__init__()
= Conv2d_BN(ed, ed, 3, 1, 1, groups=ed)
self.conv1 = Conv2d_BN(ed, ed, 1, 1, 0, groups=ed)
= ed
def forward(self, x):
return (x) + self.conv1(x) + x
def fuse(self):
conv = ()
conv1 = self.()
conv_w =
conv_b =
conv1_w =
conv1_b =
conv1_w = (conv1_w, [1,1,1,1])
identity = ((conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), [1,1,1,1])
final_conv_w = conv_w + conv1_w + identity
final_conv_b = conv_b + conv1_b
.copy_(final_conv_w)
.copy_(final_conv_b)
return conv
class RepViTBlock():
def __init__(self,in1, inp, hidden_dim, oup, kernel_size=3, stride=2, use_se=0, use_hs=0):
super(RepViTBlock, self).__init__()
assert stride in [1, 2]
= stride == 1 and inp == oup
print(inp)
print(hidden_dim)
print(oup)
assert(hidden_dim == 2 * inp)
if stride == 2:
self.token_mixer = (
Conv2d_BN(inp, inp, kernel_size, stride, (kernel_size - 1) // 2, groups=inp),
SqueezeExcite(inp, 0.25) if use_se else (),
Conv2d_BN(inp, oup, ks=1, stride=1, pad=0)
)
self.channel_mixer = Residual((
# pw
Conv2d_BN(oup, 2 * oup, 1, 1, 0),
() if use_hs else (),
# pw-linear
Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0),
))
else:
assert()
self.token_mixer = (
RepVGGDW(inp),
SqueezeExcite(inp, 0.25) if use_se else (),
)
self.channel_mixer = Residual((
# pw
Conv2d_BN(inp, hidden_dim, 1, 1, 0),
() if use_hs else (),
# pw-linear
Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
))
def forward(self, x):
return self.channel_mixer(self.token_mixer(x))