最近在看目标跟踪的东西,写了一个最基本的opencv实现的程序,没有用到深度的东西,不过这是一个基础,任何深度的东西都是在这上面进行的,所以先搞懂这个demo吧哈哈。
基本工作流程是:
1)检查第一帧
2)检查后面输入的帧,从场景的开始通过背景分割器来识别场景中的行人
3)为每个行人建立ROI,并利用Kalman/CAMShift来跟踪行人ID
4)检查下一帧是否有进入场景的新行人
import cv2
import numpy as np
import as path
import argparse
parser = ()
parser.add_argument("-a", "--algorithm",
help = "m (or nothing) for meanShift and c for camshift")
args = vars(parser.parse_args())
def center(points):
x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4
y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4
return ([np.float32(x), np.float32(y)], np.float32)
font = cv2.FONT_HERSHEY_SIMPLEX
class Pedestrian():
def __init__(self, id, frame, track_window):
= int(id)
x, y, w, h = track_window
self.track_window = track_window
= (frame[y:y+h, x:x+w], cv2.COLOR_BGR2HSV)
roi_hist = ([], [0], None, [16], [0, 180])
self.roi_hist = (roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
= (4, 2)
= ([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
= ([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 0.03
= ((2, 1), np.float32)
= ((2, 1), np.float32)
self.term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1) #停止条件
= None
(frame)
def __del__(self):
print("Pedestrian %d destroyed" %)
def update(self, frame):
hsv = (frame, cv2.COLOR_BGR2HSV)
back_project = ([hsv], [0], self.roi_hist, [0, 180], 1)
if ("algorithm") == "c":
ret, self.track_window = (back_project, self.track_window, self.term_crit)
pts = (ret)
pts = np.int0(pts)
= center(pts)
(frame, [pts], True, 255, 1)
if not ("algorithm") or ("algorithm") == "m":
ret, self.track_window = (back_project, self.track_window, self.term_crit)
x, y, w, h = self.track_window
= center([[x, y], [x+w, y], [x, y+h], [x+w, y+h]])
(frame, (x,y), (x+w, y+h), (255, 255, 0), 2)
()
prediction = ()
(frame, (int(prediction[0]), int(prediction[1])), 4, (255, 0, 0), -1)
def main():
camera = ("E:/")
history = 20
bs = ()
("surveillance")
pedestrians = {}
firstFrame = True
frames = 0
while True:
grabbed, frame = ()
if (grabbed is False):
print ("failed to grab frame.")
break
fgmask = (frame) #前景掩码
if frames < history:
frames += 1
continue
th = ((), 127, 255, cv2.THRESH_BINARY)[1]
th = (th, (cv2.MORPH_ELLIPSE, (3, 3)), iterations = 2)
dilated = (th, (cv2.MORPH_ELLIPSE, (8, 3)), iterations = 2)
image, contours, hier = (dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
counter = 0
for c in contours:
if (c) > 50:
(x, y, w, h) = (c)
(frame, (x, y), (x+w, y+h), (0, 255, 0), 1)
if firstFrame is True:
pedestrians[counter] = Pedestrian(counter, frame, (x, y, w, h))
counter += 1
for i, p in ():
(frame)
firstFrame = False
frames += 1
("surveillance", frame)
#(frame)
if (110) & 0xff == 27:
break
()
if __name__ == "__main__":
main()