地址:/doc/scipy-0.18.1/reference/generated/.csr_matrix.html
scipy.sparse.csr_matrix
class .csr_matrix(arg1, shape=None, dtype=None, copy=False)[source]
Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to ())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k].
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products
Disadvantages of the CSR format
- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
>>>
>>> import numpy as np >>> from import csr_matrix >>> csr_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>>
>>> row = ([0, 0, 1, 2, 2, 2]) >>> col = ([0, 2, 2, 0, 1, 2]) >>> data = ([1, 2, 3, 4, 5, 6]) >>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
>>>
>>> indptr = ([0, 2, 3, 6]) >>> indices = ([0, 2, 2, 0, 1, 2]) >>> data = ([1, 2, 3, 4, 5, 6]) >>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:
>>>
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]] >>> indptr = [0] >>> indices = [] >>> data = [] >>> vocabulary = {} >>> for d in docs: ... for term in d: ... index = (term, len(vocabulary)) ... (index) ... (1) ... (len(indices)) ... >>> csr_matrix((data, indices, indptr), dtype=int).toarray() array([[2, 1, 0, 0], [0, 1, 1, 1]])
Attributes
nnz | Number of stored values, including explicit zeros. |
has_sorted_indices | Determine whether the matrix has sorted indices |
dtype | (dtype) Data type of the matrix |
shape | (2-tuple) Shape of the matrix |
ndim | (int) Number of dimensions (this is always 2) |
data | CSR format data array of the matrix |
indices | CSR format index array of the matrix |
indptr | CSR format index pointer array of the matrix |
Methods
arcsin() | Element-wise arcsin. |
arcsinh() | Element-wise arcsinh. |
arctan() | Element-wise arctan. |
arctanh() | Element-wise arctanh. |
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
ceil() | Element-wise ceil. |
check_format([full_check]) | check whether the matrix format is valid |
conj() | |
conjugate() | |
copy() | |
count_nonzero() | Number of non-zero entries, equivalent to |
deg2rad() | Element-wise deg2rad. |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | Ordinary dot product |
eliminate_zeros() | Remove zero entries from the matrix |
expm1() | Element-wise expm1. |
floor() | Element-wise floor. |
getH() | |
get_shape() | |
getcol(i) | Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector). |
getformat() | |
getmaxprint() | |
getnnz([axis]) | Number of stored values, including explicit zeros. |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector). |
log1p() | Element-wise log1p. |
max([axis, out]) | Return the maximum of the matrix or maximum along an axis. |
maximum(other) | |
mean([axis, dtype, out]) | Compute the arithmetic mean along the specified axis. |
min([axis, out]) | Return the minimum of the matrix or maximum along an axis. |
minimum(other) | |
multiply(other) | Point-wise multiplication by another matrix, vector, or scalar. |
nonzero() | nonzero indices |
power(n[, dtype]) | This function performs element-wise power. |
prune() | Remove empty space after all non-zero elements. |
rad2deg() | Element-wise rad2deg. |
reshape(shape[, order]) | Gives a new shape to a sparse matrix without changing its data. |
rint() | Element-wise rint. |
set_shape(shape) | |
setdiag(values[, k]) | Set diagonal or off-diagonal elements of the array. |
sign() | Element-wise sign. |
sin() | Element-wise sin. |
sinh() | Element-wise sinh. |
sort_indices() | Sort the indices of this matrix in place |
sorted_indices() | Return a copy of this matrix with sorted indices |
sqrt() | Element-wise sqrt. |
sum([axis, dtype, out]) | Sum the matrix elements over a given axis. |
sum_duplicates() | Eliminate duplicate matrix entries by adding them together |
tan() | Element-wise tan. |
tanh() | Element-wise tanh. |
toarray([order, out]) | See the docstring for . |
tobsr([blocksize, copy]) | Convert this matrix to Block Sparse Row format. |
tocoo([copy]) | Convert this matrix to COOrdinate format. |
tocsc([copy]) | |
tocsr([copy]) | Convert this matrix to Compressed Sparse Row format. |
todense([order, out]) | Return a dense matrix representation of this matrix. |
todia([copy]) | Convert this matrix to sparse DIAgonal format. |
todok([copy]) | Convert this matrix to Dictionary Of Keys format. |
tolil([copy]) | Convert this matrix to LInked List format. |
transpose([axes, copy]) | Reverses the dimensions of the sparse matrix. |
trunc() | Element-wise trunc. |