theano 中的一个函数 sparse_block_dot
;
Function:
for b in range(batch_size):
for j in range(o.shape[1]):
for i in range(h.shape[1]):
o[b, j, :] += numpy.dot(h[b, i], W[iIdx[b, i], oIdx[b, j]])
Image Example
Input Parameter
- W (iBlocks, oBlocks, iSize, oSize) – weight matrix
- h (batch, iWin, iSize) – input from lower layer (sparse)
- inputIdx (batch, iWin) – indexes of the input blocks
- b (oBlocks, oSize) – bias vector
- outputIdx (batch, oWin) – indexes of the output blocks
Return
- dot(W[i, j], h[i]) + b[j] #but b[j] is only added once
- shape: (batch, oWin, oSize)
Applications
used form calculating theano.tensor.nnet.h_softmax
;
Codes
def h_softmax(x, batch_size, n_outputs, n_classes, n_outputs_per_class,
W1, b1, W2, b2, target=None):
"Two-level hierarchical softmax."
# First softmax that computes the probabilities of belonging to each class
class_probs = theano.tensor.nnet.softmax(tensor.dot(x, W1) + b1)
if target is None: # Computes the probabilites of all the outputs
# Second softmax that computes the output probabilities
activations = tensor.tensordot(x, W2, (1, 1)) + b2
output_probs = theano.tensor.nnet.softmax(
activations.reshape((-1, n_outputs_per_class)))
output_probs = output_probs.reshape((batch_size, n_classes, -1))
output_probs = class_probs.dimshuffle(0, 1, 'x') * output_probs
output_probs = output_probs.reshape((batch_size, -1))
# output_probs.shape[1] is n_classes * n_outputs_per_class, which might
# be greater than n_outputs, so we ignore the potential irrelevant
# outputs with the next line:
output_probs = output_probs[:, :n_outputs]
else: # Computes the probabilities of the outputs specified by the targets
target = target.flatten()
# Classes to which belong each target
target_classes = target // n_outputs_per_class
# Outputs to which belong each target inside a class
target_outputs_in_class = target % n_outputs_per_class
# Second softmax that computes the output probabilities
activations = sparse_block_dot(
W2.dimshuffle('x', 0, 1, 2), x.dimshuffle(0, 'x', 1),
tensor.zeros((batch_size, 1), dtype='int32'), b2,
target_classes.dimshuffle(0, 'x'))
output_probs = theano.tensor.nnet.softmax(activations.dimshuffle(0, 2))
target_class_probs = class_probs[tensor.arange(batch_size),
target_classes]
output_probs = output_probs[tensor.arange(batch_size),
target_outputs_in_class]
output_probs = target_class_probs * output_probs
return output_probs
theano sparse_block_dot的更多相关文章
-
Deconvolution Using Theano
Transposed Convolution, 也叫Fractional Strided Convolution, 或者流行的(错误)称谓: 反卷积, Deconvolution. 定义请参考tuto ...
-
Theano printing
Theano printing To visualize the internal relation graph of theano variables. Installing conda insta ...
-
Theano Graph Structure
Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...
-
Theano Inplace
Theano Inplace inplace Computation computation that destroy their inputs as a side-effect. Example i ...
-
broadcasting Theano vs. Numpy
broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...
-
theano scan optimization
selected from Theano Doc Optimizing Scan performance Minimizing Scan Usage performan as much of the ...
-
ubuntu系统theano和keras的安装
说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras.步骤如下: 1,安装pip sudo apt-get install ...
-
theano学习
import numpy import theano.tensor as T from theano import function x = T.dscalar('x') y = T.dscalar( ...
-
Theano 学习笔记(一)
Theano 学习笔记(一) theano 为什么要定义共享变量? 定义共享变量的原因在于GPU的使用,如果不定义共享的话,那么当GPU调用这些变量时,遇到一次就要调用一次,这样就会花费大量时间在数据 ...
随机推荐
-
json与JavaScript对象互换
1,json字符串转化为JavaScript对象: 方法:JSON.parse(string) eg:var account = '{"name":"jaytan&quo ...
-
在非UI线程中自制Dispatcher
在C#中,Task.Run当然是一个很好的启动新并行任务的机制,但是因为使用这个方法时,每次新的任务都会在一个新的线程中(其实就是线程池中的线程)运行 这样会造成某些情形下现场调度的相对困难,即使我隔 ...
-
Android入门(二十一)解析XML
原文链接:http://www.orlion.ga/685/ 解析XML常用的方式有两种,一种是PULL解析一种是SAX解析. 假设解析数据为: <apps> <app> ...
-
<;<;人性的弱点>;>;读书笔记
书名的英文名其实是<< How to win friends and influence people & how to stop worrying and start livin ...
-
paip.提升用户体验--提升java的热部署热更新能力
paip.提升用户体验--提升java的热部署热更新能力 想让java做到php那么好的热部署能力 "fix online"/在线修复吗??直接在服务器上修改源码生效,无需重启应 ...
-
Pox组件
最近在学习Pox,为了加深印象,对Pox wiki中的Pox组件写了些笔记. 按照组件的功能进行分类: L2层地址学习.洪泛 forwarding.hub forwarding.l2_lear ...
-
在线API大全
之前整理过几个经常使用api地址,在经常使用在线API集合博文中. 近期浏览网页的时候,又发现一个很完整的api的大全,分享出来,建议大家收藏起来,用的时候方便查询. 经常使用API文档索引http: ...
-
CentOS系统搭建gitolite服务
1.安装相关支持软件 a.$yum install perl-Time-HiRes openssh-server perl -y b.$yum -y install git 2.服务端操作:创建git ...
-
postgresql命令
连接数据库, 默认的用户和数据库是postgrespsql -U user -d dbname 切换数据库,相当于mysql的use dbname\c dbname列举数据库,相当于mysql的sho ...
-
再读c++primer plus 003
1.如果函数返回一个结构而不是一个指向结构的引用,将把整个结构复制到一个临时位置,再将这个拷贝复制给dup.但在返回值为引用时,将直接复制给变量,其效率更高. 2.返回引用时最重要的一点是,应避免返回 ...