介绍
- 树(Tree)是n(n >= 0)个结点的有限集合,n = 0 时称为空树。在任意一棵非空树中:
(1)有且仅有一个特定的称为根(Root)的结点;
(2)当n > 1 时,其余结点可分为m(m > 0)个互不相交的有限集T1,T2,……Tm,其中每个集合本身又是一棵树,并且称为根的子树(SubTree);
- 注意两点:(1) 根节点是唯一的;(2) 子树互不相交。
二叉树
- 二叉树是一种特殊的树,它的特点是每个结点最多有两个子树(即二叉树的度不能大于2),并且二叉树的子树有左右之分,其次序不能颠倒。
- 一棵深度为k 且有2^k -1 个结点的二叉树称为满二叉树。
- 如果有深度为k 的,有n 个结点的二叉树,如果其每一个结点都与深度为k 的满二叉树中编号从1 至n 的结点一一对应,则称之为完全二叉树。
- 二叉树性质:
性质1:在二叉树的第i 层上最多有2^(i – 1)个结点。
性质2:深度为k 的二叉树至多有2^i – 1 个结点。
/*************************************************************************
> File Name:
> Author: mrhjlong
> Mail: mrhjlong@
> Created Time: 2016年05月07日 星期六 09时57分04秒
************************************************************************/
#include<>
#include<>
#include<>
#include<>
typedef int type_t;
typedef struct node
{
type_t data;
struct node *left;
struct node *right;
}Node;
//创建结点
Node *node_create(type_t data)
{
Node *p = (Node *)malloc(sizeof(Node));
p->data = data;
p->left = NULL;
p->right = NULL;
return p;
}
//中序遍历
void tree_in_order(Node *tree)
{
if(tree == NULL)
return;
else
{
tree_in_order(tree->left);
printf("in: %d\n", tree->data);
tree_in_order(tree->right);
}
}
//前序遍历
void tree_pre_order(Node *tree)
{
if(tree == NULL)
return;
else
{
printf("pre: %d\n", tree->data);
tree_pre_order(tree->left);
tree_pre_order(tree->right);
}
}
//后序遍历
void tree_post_order(Node *tree)
{
if(tree == NULL)
return;
else
{
tree_post_order(tree->left);
tree_post_order(tree->right);
printf("next: %d\n", tree->data);
}
}
void node_insert_by_recursion(Node **pTree, Node *pNode)
{
if(*pTree == NULL)
{
*pTree = pNode;
}
else if((*pTree)->data >= pNode->data)
{
node_insert_by_recursion(&((*pTree)->left), pNode);
}
else
{
node_insert_by_recursion(&((*pTree)->right), pNode);
}
}
void node_insert(Node **pTree, Node *pNode)
{
if(*pTree == NULL)
{
*pTree = pNode;
}
else
{
Node *p = *pTree;
Node *pre = p;
while(p != NULL)
{
pre = p;
if(pNode->data <= p->data)
p = p->left;
else
p = p->right;
}
if(pNode->data <= pre->data)
{
pre->left = pNode;
}
else
{
pre->right = pNode;
}
}
}
//查找结点
Node *tree_search_by_recursion(Node *tree, type_t data)
{
if(tree == NULL)
{
printf("%d is not found!\n", data);
return NULL;
}
else if(tree->data == data)
{
return tree;
}
else if(data <= tree->data)
{
tree_search_by_recursion(tree->left, data);
}
else
{
tree_search_by_recursion(tree->right, data);
}
}
Node *tree_search(Node *tree, type_t data)
{
Node *p = tree;
while(p != NULL)
{
if(p->data == data)
return p;
else if(data <= p->data)
p = p->left;
else
p = p->right;
}
return p;
}
//求二叉树高度
int tree_height(Node *tree)
{
int left = 0;
int right = 0;
if(tree == NULL)
return 0;
else
{
left = 1 + tree_height(tree->left);
right = 1 + tree_height(tree->right);
return (left > right ? left : right);
}
}
//销毁二叉树
void tree_destroy(Node **pTree)
{
if(*pTree == NULL)
return;
else
{
tree_destroy(&((*pTree)->left));
tree_destroy(&((*pTree)->right));
free(*pTree);
*pTree = NULL;
}
}
//删除结点
void node_delete(Node **pTree,type_t data)
{
Node *pFind = *pTree;
Node *pParent = NULL;
//查找要删除的结点及其父结点
while(pFind != NULL)
{
if(pFind->data == data)
break;
else if(data < pFind->data)
{
pParent = pFind;
pFind = pFind->left;
}
else
{
pParent = pFind;
pFind = pFind->right;
}
}
if(pFind == NULL)
return;
else if(pFind->left == NULL || pFind->left->right == NULL)
{
if(pParent == NULL)
{
*pTree = pFind->right;
}
else
{
if(pParent->left == pFind)
pParent->left = pFind->right;
else
pParent->right = pFind->right;
}
free(pFind);
return;
}
else
{
pParent = pFind->left;
Node *pos = pParent->right;
while(pos->right != NULL)
{
pParent = pos;
pos = pos->right;
}
pParent->right = pos->left;
pFind->data = pos->data;
free(pos);
return;
}
}
int main()
{
Node *tree = NULL;
int a[] = {45, 23, 65, 100, 29, 55, 89, 10, 3, 43, 36};
int i = 0;
Node *p = NULL;
for(i = 0; i < sizeof(a) / sizeof(a[0]); i++)
{
p = node_create(a[i]);
node_insert(&tree, p);
}
// tree_destroy(&tree);
Node *pSea = tree_search(tree, 36);
if(pSea != NULL)
{
printf("search: %d\n", pSea->data);
printf("pSea: %p\n", pSea);
printf("pNode: %p\n", p);
}
printf("height: %d\n", tree_height(tree));
node_delete(&tree, 29);
tree_in_order(tree);
printf("\n");
tree_pre_order(tree);
printf("\n");
tree_post_order(tree);
return 0;
}