理工学---算法模型---传统机器学习---树相关---随机森林原理与算法实现

时间:2025-03-13 15:39:42
# -*- coding: utf-8 -*- # Random Forest Algorithm on Sonar Dataset from random import seed from random import randrange from csv import reader from math import sqrt import numpy as np #随机森林算法部分 #--------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------- #随机森林预测 #--------------------------------------------------------------------------------------------------- #得到单棵树的预测 # Make a prediction with a decision tree def predict(node, row): if row[node['index']] < node['value']:#属于左子集一类 if isinstance(node['left'], dict): return predict(node['left'], row) else: return node['left'] else:#属于右子集一类 if isinstance(node['right'], dict):#需要顺着子集的路径继续递归寻找类别 return predict(node['right'], row) else:#已经找到类别 return node['right'] #利用随机森林预测类别 # Make a prediction with a list of bagged trees def bagging_predict(trees, row): predictions = [predict(tree, row) for tree in trees]#利用多棵决策树预测样本类别 return max(set(predictions), key=predictions.count)#少数服从多数确定类别 #随机森林产生过程 #--------------------------------------------------------------------------------------------------- #强制产生叶节点,并标记类别 # Create a terminal node value def to_terminal(group):#强制产生叶节点,并标记节点为类别样本数目最多的类别 outcomes = [row[-1] for row in group] return max(set(outcomes), key=outcomes.count) #节点分支主体 # Create child splits for a node or make terminal def split(node, max_depth, min_size, n_features, depth): left, right = node['groups']#取出左右子集 del(node['groups']) # check for a no split if not left or not right:#左右子集为空,强制产生叶节点,并标记节点为类别样本数目最多的类别 node['left'] = node['right'] = to_terminal(left + right) return # check for max depth if depth >= max_depth:#决策树层数过多,强制产生叶节点,并标记节点为类别样本数目最多的类别;depth一般默认设置为1表示当前在根节点分支 node['left'], node['right'] = to_terminal(left), to_terminal(right) return # process left child if len(left) <= min_size:#左子集中样本数过少,强制产生叶节点,并标记节点为类别样本数目最多的类别 node['left'] = to_terminal(left) else: node['left'] = get_split(left, n_features)#对左子集进行分支,即决策树的递归操作 split(node['left'], max_depth, min_size, n_features, depth+1) # process right child if len(right) <= min_size:#右子集中样本数过少,强制产生叶节点,并标记节点为类别样本数目最多的类别 node['right'] = to_terminal(right) else: node['right'] = get_split(right, n_features)#对右子集进行分支,决策树递归 split(node['right'], max_depth, min_size, n_features, depth+1) #计算节点Gini索引 # Calculate the Gini index for a split dataset def gini_index(groups, class_values):#计算样本集合的gini索引值 gini = 0.0 for class_value in class_values: for group in groups: size = len(group) if size == 0: continue proportion = [row[-1] for row in group].count(class_value) / float(size) gini += (proportion * (1.0 - proportion)) #这里采用左右子集的Gini系数之和来表示 return gini #简单地利用属性值对节点划分子集 # Split a dataset based on an attribute and an attribute value def test_split(index, value, dataset):#以某一样本的某一特征为参考,当其他样本的该特征值小于参考特征值的时候归为一类,大于等于参考特征值的时候归为另一类 left, right = list(), list() for row in dataset: if row[index] < value: left.append(row) else: right.append(row) return left, right #产生测试属性和左右子集和划分左右子集的标准 # Select the best split point for a dataset def get_split(dataset, n_features): class_values = list(set(row[-1] for row in dataset))#取出样本类别标签 b_index, b_value, b_score, b_groups = 999, 999, 999, None features = list() while len(features) < n_features:#随机获取n_features个特征用于创建决策树 index = randrange(len(dataset[0])-1) if index not in features: features.append(index) for index in features:#对某一个特征进行操作 for row in dataset:#尝试逐个样本的值作为划分左右子集的标准,感觉这种方式很低效 groups = test_split(index, row[index], dataset)#按照样本row的index特征值将样本集合dataset分为两个子集 gini = gini_index(groups, class_values)#左右子集的gini之和,取最小值来选取测试属性 if gini < b_score: b_index, b_value, b_score, b_groups = index, row[index], gini, groups#更新最佳特征的相关信息 return {'index':b_index, 'value':b_value, 'groups':b_groups}#返回测试属性和左右子集和划分左右子集的标准 #生成单棵树的主体部分 # Build a decision tree def build_tree(train, max_depth, min_size, n_features):#生成一棵决策树 root = get_split(train, n_features)#获取测试属性、左右子集和划分左右子集的标准(先随机选出n_features个属性,然后在这些属性里选择出测试属性,进而分支) split(root, max_depth, min_size, n_features, 1)#决策树分支,每一次分支都是先随机选出n_features个属性,然后再在里面选出测试属性,进而分支 return root #在训练样本中随机选取部分样本,为单棵结的生长准备 # Create a random subsample from the dataset with replacement def subsample(dataset, ratio): sample = list() n_sample = round(len(dataset) * ratio)#这里dataset是局部变量,接受的是上一层传入的train_set数据 while len(sample) < n_sample: index = randrange(len(dataset)) sample.append(dataset[index]) return sample #随机森林的生长主体并利用得到的随机森林对测试集进行测试 # Random Forest Algorithm def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):#利用随机森林进行学习 trees = list() for i in range(n_trees): sample = subsample(train, sample_size)#随机抽取部分样本,sample_size为抽取比例 tree = build_tree(sample, max_depth, min_size, n_features)#利用部分随机的特征来进行决策树的生长 trees.append(tree)#生成多棵决策树 predictions = [bagging_predict(trees, row) for row in test]#利用随机森林对测试样本集进行类别预测 return(predictions) #交叉验证部分 #--------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------- #计算预测精度 # Calculate accuracy percentage def accuracy_metric(actual, predicted): correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0 #准备好交叉验证数据 # Split a dataset into k folds def cross_validation_split(dataset, n_folds):#将样本随机分成n_folds组,最后一组的数目会小于等于其他组 dataset_split = list() dataset_copy = list(dataset) fold_size = len(dataset) / n_folds sample_flag=0 for i in range(n_folds): fold = list() if (len(dataset)-sample_flag>=fold_size): while len(fold) < fold_size: index = randrange(len(dataset_copy))#产生随机索引,以便后面抽取样本 fold.append(dataset_copy.pop(index))#这是无放回抽取样本,是因为交叉验证的需要,与随机森林的有放回抽取是不一样的 sample_flag=sample_flag+1 dataset_split.append(fold)#逐一获得各组数据 else: dataset_split.append(dataset_copy)#获得最后一组数据 return dataset_split #交叉验证 # Evaluate an algorithm using a cross validation split def evaluate_algorithm(dataset, algorithm, n_folds, *args): folds = cross_validation_split(dataset, n_folds)#按照交叉验证的要求得到n_folds组数据 scores = list() for fold in folds:#将其中一组数据做为测试组,其他组作为训练组,进行随机森林的学习,并循环这个过程,即所谓交叉验证 train_set = list(folds)#这里只是为了避免对原数据造成影响,采用这种方式给新变量赋值 train_set.remove(fold) train_set = sum(train_set, [])#将训练组的样本合到一个列表下,之后便是在这一个集合中随机抽取部分样本;测试组数据在fold中; test_set = list() for row in fold:#将测试组数据转移到test_set row_copy = list(row) test_set.append(row_copy) row_copy[-1] = None#去掉测试组数据的类别标签 predicted = algorithm(train_set, test_set, *args)#利用随机森林对测试集进行类别预测 actual = [row[-1] for row in fold]#真实类别值 accuracy = accuracy_metric(actual, predicted)#计算一组测试值的预测精度 scores.append(accuracy) return scores #数据准备部分 #--------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------- # Load a CSV file def load_csv(filename):#读取csv文件中的数据,按行读取,存放于列表中 dataset = list() with open(filename, 'r') as file: csv_reader = reader(file) for row in csv_reader: if not row: continue dataset.append(row) return dataset # Convert string column to float def str_column_to_float(dataset, column):#将样本中某变量的值由字符型转换成浮点型并去掉了首尾的空格 for row in dataset: row[column] = float(row[column].strip()) # Convert string column to integer def str_column_to_int(dataset, column):#将样本指定列的特征值由字符转换成数值标签,0,1,...这里就是要被标签的数值化 class_values = [row[column] for row in dataset] unique = set(class_values) lookup = dict() for i, value in enumerate(unique): lookup[value] = i for row in dataset: row[column] = lookup[row[column]] return lookup#有没有返回无所谓 #随机森林的使用部分 #--------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------- # Test the random forest algorithm seed(1) # load and prepare data filename = '' dataset = load_csv(filename) sample_num,var_num=np.shape(dataset) print(sample_num,var_num)#数据集是208个样本,60个特征,最后一位为类别标标签,两类,R代表岩石,M代表金属 # convert string attributes to float for i in range(0, len(dataset[0])-1):#逐个将样本的特征值由字符型转换为浮点型 str_column_to_float(dataset, i) # convert class column to integers str_column_to_int(dataset, len(dataset[0])-1)#将类别标签转换为数值标签 # evaluate algorithm n_folds = 5 #将原始样本分成5份,以便于交叉验证 max_depth = 10#初始化决策树的层数 min_size = 1 #当集合中样本数少于min_size时就停止分支,相当于分支时统计特征的限制,设置为1即没有任何限制 sample_size = 0.8#sample_size为随机抽取样本时的比例 n_features = int(sqrt(len(dataset[0])-1))#初始化随机选取特征的数目, for n_trees in [5,10,15]: scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features) print('Trees: %d' % n_trees) print('Scores: %s' % scores) print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))