LLaMA-Factory 可视化界面qwen2 lora微调自有数据集使用案例

时间:2025-03-09 08:20:04
llamafactory-cli train \ --stage sft \ --do_train True \ --model_name_or_path qwen2-7b \ --preprocessing_num_workers 16 \ --finetuning_type lora \ --template default \ --flash_attn auto \ --dataset_dir LLaMA-Factory/data \ --dataset wenyanwen \ --cutoff_len 1024 \ --learning_rate 5e-05 \ --num_train_epochs 3.0 \ --max_samples 100000 \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 8 \ --lr_scheduler_type cosine \ --max_grad_norm 1.0 \ --logging_steps 5 \ --save_steps 100 \ --warmup_steps 0 \ --optim adamw_torch \ --packing False \ --report_to none \ --output_dir saves/Qwen2-7B/lora/train_2024-08-12-02-51-43 \ --bf16 True \ --plot_loss True \ --ddp_timeout 180000000 \ --include_num_input_tokens_seen True \ --lora_rank 8 \ --lora_alpha 16 \ --lora_dropout 0 \ --lora_target all