粒子群算法优化BP方法

时间:2025-02-18 13:47:41
  • function pso_bpnn()
  • % 网络参数
  • inputSize = 10; % 输入层节点数
  • hiddenSize = 5; % 隐藏层节点数
  • outputSize = 1; % 输出层节点数
  • % 粒子群参数
  • nParticles = 30; % 粒子数量
  • maxIter = 100; % 最大迭代次数
  • c1 = 2; % 个体学习因子
  • c2 = 2; % 社会学习因子
  • w = 0.8; % 惯性权重
  • % 初始化粒子群
  • positions = rand(nParticles, (inputSize+1)*hiddenSize + (hiddenSize+1)*outputSize);
  • velocities = zeros(nParticles, size(positions, 2));
  • pBest = positions;
  • pBestScores = inf(size(positions, 1), 1);
  • [gBest, ~] = min(pBestScores);
  • gBestPosition = positions(gBest, :);
  • % 主循环
  • for iter = 1:maxIter
  • for i = 1:nParticles
  • % 更新速度和位置
  • velocities(i, :) = w * velocities(i, :) ...
  • + c1 * rand * (pBest(i, :) - positions(i, :)) ...
  • + c2 * rand * (gBestPosition - positions(i, :));
  • positions(i, :) = positions(i, :) + velocities(i, :);
  • % 评估粒子
  • fitnessScore = evaluateFitness(positions(i, :), inputSize, hiddenSize, outputSize);
  • % 更新个体最优
  • if fitnessScore < pBestScores(i)
  • pBestScores(i) = fitnessScore;
  • pBest(i, :) = positions(i, :);
  • end
  • % 更新全局最优
  • if fitnessScore < pBestScores(gBest)
  • gBest = i;
  • gBestPosition = positions(i, :);
  • end
  • end
  • % 打印进度
  • fprintf('Iteration %d: Best Score = %f\n', iter, pBestScores(gBest));
  • end
  • % 输出最优解
  • fprintf('Optimal weights found:\n');
  • disp(gBestPosition);
  • end
  • function score = evaluateFitness(weights, inputSize, hiddenSize, outputSize)
  • % 划分权重
  • W1 = reshape(weights(1:(inputSize+1)*hiddenSize), hiddenSize, inputSize+1);
  • b1 = W1(:, end);
  • W1 = W1(:, 1:end-1);
  • W2 = reshape(weights((inputSize+1)*hiddenSize+1:end), outputSize, hiddenSize+1);
  • b2 = W2(:, end);
  • W2 = W2(:, 1:end-1);
  • % 假设有一些训练数据和标签
  • % 这里需要替换为你的数据
  • inputs = rand(inputSize, 100); % 输入数据
  • targets = rand(outputSize, 100); % 目标数据
  • % 前向传播
  • z2 = W1 * [inputs; ones(1, size(inputs, 2))] + b1;
  • a2 = tanh(z2);
  • z3 = W2 * [a2; ones(1, size(a2, 2))] + b2;
  • outputs = sigmoid(z3);
  • % 计算误差
  • error = outputs - targets;
  • score = mean(error.^2); % 均方误差
  • end
  • function s = sigmoid(x)
  • s = 1 ./ (1 + exp(-x));
  • end