function pso_bpnn()
% 网络参数
inputSize = 10; % 输入层节点数
hiddenSize = 5; % 隐藏层节点数
outputSize = 1; % 输出层节点数
% 粒子群参数
nParticles = 30; % 粒子数量
maxIter = 100; % 最大迭代次数
c1 = 2; % 个体学习因子
c2 = 2; % 社会学习因子
w = 0.8; % 惯性权重
% 初始化粒子群
positions = rand(nParticles, (inputSize+1)*hiddenSize + (hiddenSize+1)*outputSize);
velocities = zeros(nParticles, size(positions, 2));
pBest = positions;
pBestScores = inf(size(positions, 1), 1);
[gBest, ~] = min(pBestScores);
gBestPosition = positions(gBest, :);
% 主循环
for iter = 1:maxIter
for i = 1:nParticles
% 更新速度和位置
velocities(i, :) = w * velocities(i, :) ...
+ c1 * rand * (pBest(i, :) - positions(i, :)) ...
+ c2 * rand * (gBestPosition - positions(i, :));
positions(i, :) = positions(i, :) + velocities(i, :);
% 评估粒子
fitnessScore = evaluateFitness(positions(i, :), inputSize, hiddenSize, outputSize);
% 更新个体最优
if fitnessScore < pBestScores(i)
pBestScores(i) = fitnessScore;
pBest(i, :) = positions(i, :);
end
% 更新全局最优
if fitnessScore < pBestScores(gBest)
gBest = i;
gBestPosition = positions(i, :);
end
end
% 打印进度
fprintf('Iteration %d: Best Score = %f\n', iter, pBestScores(gBest));
end
% 输出最优解
fprintf('Optimal weights found:\n');
disp(gBestPosition);
end
function score = evaluateFitness(weights, inputSize, hiddenSize, outputSize)
% 划分权重
W1 = reshape(weights(1:(inputSize+1)*hiddenSize), hiddenSize, inputSize+1);
b1 = W1(:, end);
W1 = W1(:, 1:end-1);
W2 = reshape(weights((inputSize+1)*hiddenSize+1:end), outputSize, hiddenSize+1);
b2 = W2(:, end);
W2 = W2(:, 1:end-1);
% 假设有一些训练数据和标签
% 这里需要替换为你的数据
inputs = rand(inputSize, 100); % 输入数据
targets = rand(outputSize, 100); % 目标数据
% 前向传播
z2 = W1 * [inputs; ones(1, size(inputs, 2))] + b1;
a2 = tanh(z2);
z3 = W2 * [a2; ones(1, size(a2, 2))] + b2;
outputs = sigmoid(z3);
% 计算误差
error = outputs - targets;
score = mean(error.^2); % 均方误差
end
function s = sigmoid(x)
s = 1 ./ (1 + exp(-x));
end