机器学习-Logistic回归(最佳回归系数的确定)

时间:2025-02-18 13:45:47
  • import numpy as np
  • import as plt
  • """装载函数"""
  • def loadDataSet():
  • dataMat = []
  • labelMat = []
  • fr = open('')
  • for line in (): # 按行取数据
  • lineArr = ().split() # 按空格切分
  • ([1.0, float(lineArr[0]), float(lineArr[1])]) # 每一行的前两个数据存入特征集
  • (int(lineArr[2])) # 每一行的最后一个数据存入标签集
  • return dataMat, labelMat
  • """Sigmoid函数"""
  • def sigmoid(inX):
  • return 1.0 / (1 + (-inX))
  • """梯度上升发"""
  • def gradAscent(dataMatIn, classLabels):
  • dataMatrix = (dataMatIn) # 转换成numpy的mat
  • labelMat = (classLabels).transpose() # 转换成numpy的mat,并进行转置
  • m, n = (dataMatrix) # 返回dataMatrix的大小。m为行数,n为列数。
  • alpha = 0.001 # 移动步长,也就是学习速率,控制更新的幅度。
  • maxCycles = 500 # 最大迭代次数
  • weights = ((n, 1)) # 权重,含有一列向量,并且元素都为1的矩阵
  • for k in range(maxCycles): # 迭代500次
  • h = sigmoid(dataMatrix * weights) # 梯度上升矢量化公式
  • error = labelMat - h
  • weights = weights + alpha * () * error
  • return ()
  • """绘制拟合曲线"""
  • def plotBestFit(weights):
  • dataMat, labelMat = loadDataSet()
  • dataArr = (dataMat)
  • n = (dataMat)[0] # 数据个数
  • xcord1 = []
  • ycord1 = []
  • xcord2 = []
  • ycord2 = []
  • for i in range(n):
  • if int(labelMat[i]) == 1: # 红色的点
  • (dataArr[i, 1])
  • (dataArr[i, 2])
  • else: # 绿色的点
  • (dataArr[i, 1])
  • (dataArr[i, 2])
  • fig = () # 画布大小默认
  • ax = fig.add_subplot(111) # 设置子图
  • (xcord1, ycord1, s=30, c='red', marker='s')
  • (xcord2, ycord2, s=30, c='green')
  • x = (-3.0, 3.0, 0.1) # 绘制你和曲线,x轴方向每次增加0.1个点
  • y = (-weights[0] - weights[1] * x) / weights[2] # 绘制你和曲线 y轴方向每次增加幅度
  • (x, y)
  • ('BestFit')
  • ('X1')
  • ('X2')
  • ()
  • if __name__ == '__main__':
  • dataMat, labelMat = loadDataSet()
  • weights = gradAscent(dataMat, labelMat)
  • plotBestFit(weights)