@KafkaListener的配置使用

时间:2025-02-13 17:07:40

@KafkaListener注解来自spring-kafka包。使用@KafkaListener消费消息,需要按照spring-kafka指定的格式填写kafka配置信息,即可自动装配生成相关的KafkaConsumer实例,然后使用@KafkaListener消费消息。这里需要注意,使用自动装载方式生成KafkaConsumer实例时,spring-kafka的配置参数与原生kafka的配置参数在格式上略有不同,因此,本文主要介绍了spring-kafka自动装载方式下生产者、消费者常用的配置参数,供参考使用:

一、@KafkaListener的配置使用

1、依赖项

<!-- spring-kafka --> 
<dependency>
    <groupId></groupId>
    <artifactId>spring-kafka</artifactId>
    <version>2.6.0</version>
</dependency>
<!-- kafka-clients --> 
<dependency>
    <groupId></groupId>
    <artifactId>kafka-clients</artifactId>
    <version>2.6.0</version>
</dependency>

<!-- 配置信息补全提示 -->
<dependency>
    <groupId></groupId>
    <artifactId>spring-boot-configuration-processor</artifactId>
    <optional>true</optional>
</dependency>

2、配置项

spring:
  kafka:
    producer:
      bootstrap-servers: 172.*.*.1:8423,172.*.*.2:8423,172.*.*.3:8423,172.*.*.4:8423,172.*.*.5:8423
      key-serializer: 
      value-serializer: 
      ### 这里无效,因为这是Kafka服务器的配置
      # : false
      # 生产者信息
      properties:
        : SCRAM-SHA-512
        : SASL_PLAINTEXT
        :  required username='***' password='md5(***)';
    consumer:
      bootstrap-servers: 172.*.*.1:8423,172.*.*.2:8423,172.*.*.3:8423,172.*.*.4:8423,172.*.*.5:8423
      key-deserializer: 
      value-deserializer: 
      group-id: ***
      # 拉取数据数量上限(不满足时等待poll-timeout毫秒)
      max-poll-records: 200
      # 拉取数据字节下限(不满足时等待fetch-max-wait毫秒)
      fetch-min-size: 1
      # 拉取数据等待上限(不满足fetch-min-size的等待时间)
      fetch-max-wait: 5000
      # 关闭自动提交偏移量
      enable-auto-commit: false
      # 偏移量复位方式 earliest、latest、none
      auto-offset-reset: earliest
      # 消费者信息
      properties:
        : SCRAM-SHA-512
        : SASL_PLAINTEXT
        :  required username='***' password='md5(***)';
    listener:
      # 拉取数据方式: single(单个)、batch(批量)
      type: batch
      # 请求数据小于max-poll-records,poll方法会持续请求,直到超时
      poll-timeout: 500
      # 指定listener容器中的线程数,用于提高并发量(可在代码中配置)
      # concurrency: 6
      # 偏移量提交方式:手动
      ack-mode: manual_immediate
    properties:
      # 拉取数据间隔(须大于消息处理耗时)
      max:
        poll:
          interval:
            ms: 600000
      # group coordinator判定消费实例僵死并踢除的时间阈值
      session:
        timeout:
          ms: 120000  #默认10000

3、代码块

@Slf4j
@Component
public class XxxKafkaListener {

    @Autowired
    XxxKafkaConsumer xxxKafkaConsumer;

    // @KafkaListener(topics = "#{'${}'.split(',')}",concurrency = "#{'${topics}'.split(',').length}")
    @KafkaListener(topics = "#{'${}'.split(',')}",concurrency = "#{'${}'}" )
    public void listenXxx(ConsumerRecords<?, ?> records, Acknowledgment ack){

        try {
		    /// 消息处理
		    /// Iterator<ConsumerRecord<?,?>> iterator = (Iterator)();
			/// while(()){
			/// 	JSONObject json = ((String)().value());
			/// 	......
			/// }
			
			/// 消息处理
            xxxKafkaConsumer.processRecords(records);
        }catch (Exception e) {
            /// 上述语句抛出异常后,直接运行至切面,不会执行下述语句
            log.error("处理xxx信息异常:{}", e);
        }
        ack.acknowledge();
    }
}

二、@KafkaListener的源码解析

在Spring Boot中,@KafkaListener 注解主要是依赖于 KafkaMessageListenerContainer 类。该类是Spring Kafka提供的一种消息监听器容器,它可以根据配置信息监听并消费Kafka消息。当我们在方法上添加@KafkaListener注解时,Spring Boot会自动创建 KafkaMessageListenerContainer 实例,并将消息路由到相应的处理方法。

public @interface KafkaListener {
 
	/// 监听器id(可用来命名消费者线程)
	String id() default "";
 
	/// 监听器工厂
	String containerFactory() default "";
 
	/// 监听器主题
	String[] topics() default {};
 
	/// 监听器主题,匹配正则表达式
	String topicPattern() default "";
 
	/// 监听器主题&分区
	TopicPartition[] topicPartitions() default {};
 
	/// 错误处理器
	String errorHandler() default "";
 
	/// 消费组id
	String groupId() default "";
 
	/// 是否使用id作为groupId
	boolean idIsGroup() default true;
}

2.1 配置监听器工厂containerFactory

/// myKafkaListenerContainerFactory 代表了一个kafka集群
@KafkaListener(
        containerFactory = "myKafkaListenerContainerFactory",
        topics = "#{'${}'.split(',')}",
        groupId = "${}"
)
@Bean(name = "myKafkaListenerContainerFactory")
public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> myKafkaListenerContainerFactory() {
    return initKafkaListenerContainerFactory(ConfigManager.get("", "127.0.0.1:9092"));
}

2.2 配置监听器的topic

topic的配置方式有3种,分别是topics、topicPattern、topicPartitions;

(1)topics,可以指定多个topic

@KafkaListener( topics = {"topic1","topic2"}, /// 或 topics = "#{'${}'.split(',')}",
				groupId = "${.group_id}" )

(2)topicPattern,支持正则表达式

@KafkaListener(topicPattern = "topic_*", concurrency = "6")
public void onMessage( @Payload String data,
					   @Header(KafkaHeaders.RECEIVED_TOPIC) String topic,
					   @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) ByteBuffer key,
					   Acknowledgment ack, //手动提交offset
					   @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
					   @Header(KafkaHeaders.OFFSET) long offSet,
					   Consumer<?, ?> consumer //消费者 
					  )

(3)topicPartitions,可以为监听器配置主题和分区(及可选的初始偏移量)

// 监听topic1的0,1分区;监听topic2的0分区,1分区从offset为100的开始消费;
@KafkaListener(id = "thing2", topicPartitions =
		{ @TopicPartition(topic = "topic1", partitions = { "0", "1" }),
		  @TopicPartition(topic = "topic2", partitions = "0", partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
		})
public void onMessage(ConsumerRecord<?, ?> record) {
	...
}

2.3 配置错误处理器errorHandler

errorHandler指定了错误处理器的beanName:

@KafkaListener(
        topics = "#{'${}'.split(',')}",
        groupId = "${.group_id}",
        errorHandler = "errorHandler"
)

可以在consumer中手动try/catch,也可实现 KafkaListenerErrorHandler 复用异常处理逻辑;

@Component("errorHandler")
public class MyKafkaListenerErrorHandler implements KafkaListenerErrorHandler {
	
    @Override
    public Object handleError(Message<?> message, ListenerExecutionFailedException exception) {
		/// handle error ......
        return null;
    }
 
    @Override
    public Object handleError(Message<?> message, ListenerExecutionFailedException exception, Consumer<?, ?> consumer) {
        /// handle error ......
        return null;
    }
}

4.4 配置监听器的消费组groupId

如果配置了属性groupId,则groupId优先级最高

 @KafkaListener(id = "consumer-id1", idIsGroup = false, topics = "topic1", groupId = "consumer_group")