关于空间曲线(参数方程)绕x轴旋转得到的曲面方程
绕哪个轴旋转,那个坐标不变,另一个的平方变,坐标的平方和绕轴旋转。
由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
扩展资料:
由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程即称为普通方程。
用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。
根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。
参考资料来源:百度百科--参数方程
f(x)分别绕X ,Y 轴旋转的体积公式是什么,为何不...
绕x轴旋转:
将f(x)在其x的区间分成N段(N很大),每段的长度记为dx,再在分段点上沿垂直于x轴的方向切开。这样就有N段圆柱体,每段圆柱体的体积V=dx×Pi×r*r
Pi是派,r是y,也就是f(x),V=dx×f(x)×f(x)×Pi。
再把N段的体积加起来,要用到积分的知识,V=∫f(x)×f(x)×PI×dx
绕y轴旋转:
同理,V=∫x×x×PI×dy
关于定积分几何应用求绕x=2旋转体积 绕x轴我会 但...
题主给出的解法被称为微元法,而且是在横坐标为x处取的宽为dx的圆环薄片,此时薄片的高等于上面的曲线对应的函数√(2x-x^2)减去下面的曲线对应的函数x,而圆环薄片的半径是(2-x)。所以体积微元
dV=2π(2-x) * [√(2x-x^2)-x] * dx.
而所求体积自然是上述微元从0到1积分。