【数据结构】_复杂度

时间:2025-02-02 16:42:05

目录

1. 算法效率

2. 时间复杂度

2.1 时间复杂度概念

2.2 准确的时间复杂度函数式

2.3 大O渐进表示法

2.4 时间复杂度的常见量级

2.5 时间复杂度示例

3. 空间复杂度

3.1 空间复杂度概念

3.2 空间复杂度示例


1. 算法效率

一般情况下,衡量一个算法的好坏是从时间和空间两个维度来衡量的。

时间复杂度主要衡量一个算法的运行快慢,空间复杂度主要衡量一个算法运行需要的额外空间。

2. 时间复杂度

2.1 时间复杂度概念

在计算机科学中算法的时间复杂度是一个函数,一个算法所花费的时间与其中语句的执行次数成比例,算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

注:不能直接用运行时间来定义一个算法的时间复杂度,一个算法的运行时间与硬件的配置存在联系,同样一个算法无法算出准确时间。而时间复杂度与具体机器无关。

2.2 准确的时间复杂度函数式

对于以下代码:

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

F(N)=N*N+2*N+10,这是准确的时间复杂度函数式,计算的结果是算法运行的准确次数。

但其意义并不大,计算时间复杂度时,并不一定要计算出准确的执行次数,只需要大概执行次数表示算法效率所在量级即可,故而引进大O的渐进表示法。

2.3 大O渐进表示法

当不方便在算法之间比较准确时间复杂度函数式时,使用大O的渐进表示法对其进行简化。

简单而言,大O渐进表示法是估算一个算法的数量级而非准确数值。

具体而言,推导大O阶方法:

(1)用常数1取代运行时间中的所有加法常数;(O(1)代表常数次,而非1次)

(2)在修改后的运行次数函数中,只保留最高阶项

(3)如果最高阶项存在且不是1,则去除与这个项目相乘的常数

得到的结果就是大O阶。

2.4 时间复杂度的常见量级

按数量级递增排列,常见的时间复杂度有:

O(1)<=O(log N)<=O(N)<=O(Nlog N)<=O(n^2)<=O(n^3)<=...<=n^k<=O(2^n)

随着问题规模N的不断增大,上述时间复杂度不断增大,算法的执行效率越低,若复杂度超过O(N^3)则该算法效率已经非常低,没有运行的必要。

2.5 时间复杂度示例

示例1:

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

时间复杂度为O(N)=N;(时间复杂度准确函数式:F(N)=2*N+10)

示例2:

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

当N、M大小未知时,时间复杂度表示为O(N+M);

当N远大于M时,时间复杂度表示为O(N);

当M远大于N时,时间复杂度表示为O(M);

当N、M属于一个量级时,时间复杂度表示为O(M)或O(N)均可;

示例3:

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

时间复杂度表示为O(1);

示例4:

const char * strchr ( const char * str, int character );

该算法的时间复杂度最好1次,最坏N次,时间复杂度一般看最坏情况,为O(N);

注:(1)strstr为字符串查找函数,详细内容见下文:

【C语言】_字符串查找函数strstr_c语言查找字符-****博客文章浏览阅读147次,点赞9次,收藏5次。注:关于上文strstr函数的模拟实现,还有很大优化空间,包括但不限于KMP算法,本篇仅实现简单的匹配功能,暂不考虑效率。(2)待匹配字符串str2需逐字符在str1中进行对应查找匹配,将用于遍历str2的指针变量记为s2,类型为char*;(3)str2需与str1中的字符逐字符进行匹配,需设遍历str1的指针变量,记为s1,类型为char*;(1)返回值为第一次匹配的str2在str1中的位置,记为cur,类型为char*;strstr函数功能:在str1中查找str2;若未找到,则返回空指针;_c语言查找字符https://blog.****.net/m0_63299495/article/details/145165702https://blog.****.net/m0_63299495/article/details/145165702https://blog.****.net/m0_63299495/article/details/145165702(2)在算法时间复杂度计算时,一般会采取保守估计,将最坏情况作为时间复杂度。

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N);

示例5:(冒泡排序)

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

时间复杂度准确函数式式F(N) = N-1+N-2+...+2+1=((N-1+1)*(N-1))/2=(N*(N-1))/2;

故时间复杂度为O(N^2);

示例6:(二分查找)

int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid;
		else
			return mid;
	}
	return -1;
}

二分查找用于有序数组的查找,查找区间变化为N -> N/2 -> N/2/2 -> N/2/2/2 -> ...  -> N/2/2/.../2

① 查找的最好情况为查找一次即找到,即O(1);

② 查找的最坏情况为查找区间只剩一个数或没找到,即 N/2/2/.../2=1,假设查找了x次,即2^x=N,求得最坏情况为O(log N)   ,故时间复杂度为O(log N) ;

注:在时间复杂度的表示中,log₂N 可简写为 log N,不准确表达也有lg N。

在时间复杂度表示中,默认 log N 的底数为2。

示例7:(阶乘)

long long Fac(size_t N)
{
	if (0 == N)
		return 1;
	return Fac(N - 1) * N;
}

Fac(N)调用Fac(N-1), Fac(N-1)调用Fac(N-2)...Fac(2)调用Fac(1),Fac(1)调用Fac(0),共调用N+1次,且单次调用复杂度为O(1),递归的时间复杂度是所有递归调用次数的累加:

故时间复杂度为O(N);

示例8:

long long Fib(size_t N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}

 复杂度具体函数可以近似为Fib(N)=2^0 + 2^1 + 2^2 + ...... + 2^(N-2) = 2^(N-1) - 1:

时间复杂度为O(2^N);(仅有理论意义,实际几乎不用)

注:当N不是非常大时,通常使用循环代替递归计算斐波那契数列,可降低时间复杂度为O(N):

long long Fib(size_t N) {
	long long f1 = 1;
	long long f2 = 2;
	long long f3 = 0;
	for (size_t i = 3; i <= N; i++) {
		f3 = f1 + f2;
		f1 = f2;
		f2 = f3;
	}
	return f3;
}

3. 空间复杂度

3.1 空间复杂度概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

同时间复杂度一样,具体占用了多少字节的空间大小没有意义,也采用大O渐进表示法,空间复杂度计算的是变量个数

注意函数运行时所需要的栈空间(存储参数、局部变量以及一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显示申请的额外空间来确定

3.2 空间复杂度示例

示例1:

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

该程序开辟了常数个额外空间,空间复杂度是O(1);

示例2:

long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;

	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

空间复杂度是O(N);

示例3:

long long Fac(size_t N)
{
	if (N == 0)
		return 1;

	return Fac(N - 1) * N;
}

递归调用了N+1次,量级为N,开辟了N个栈帧,每个栈帧使用了常数个空间,空间复杂度为O(N);

示例4:

long long Fib(size_t N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}

(时间是累积的;空间不累积,可以重复利用)空间复杂度是O(N); 

相较于时间复杂度,空间复杂度更为简单,通常情况下最常见的空间复杂度有O(1)、O(N)(一维数组)、O(N^2)(二维数组);