利用微信的第三方库itchat,网页登陆后,当好友发送消息中有图片时,自动检测是否为色情图片并回复结果。
打开后直接弹出登陆二维码,手机扫一下就登陆运行了。
感觉是个有点好玩的东西,虽然每个人只是图一时新鲜。可能我的朋友圈太保守,实践过程中我并没有搜集到几张黄图。
import sys
import os
import _io
from collections import namedtuple
import shutil
from PIL import Image
import itchat, time
from import *
class Nude(object):
Skin = namedtuple("Skin", "id skin region x y")
def __init__(self, path_or_image):
# 若 path_or_image 为 类型的实例,直接赋值
if isinstance(path_or_image, ):
= path_or_image
# 若 path_or_image 为 str 类型的实例,打开图片
elif isinstance(path_or_image, str):
= (path_or_image)
# 获得图片所有颜色通道
bands = ()
# 判断是否为单通道图片(也即灰度图),是则将灰度图转换为 RGB 图
if len(bands) == 1:
# 新建相同大小的 RGB 图像
new_img = ("RGB", )
# 拷贝灰度图 到 RGB图 new_img.paste (PIL 自动进行颜色通道转换)
new_img.paste()
f =
# 替换
= new_img
= f
# 存储对应图像所有像素的全部 Skin 对象
self.skin_map = []
# 检测到的皮肤区域,元素的索引即为皮肤区域号,元素都是包含一些 Skin 对象的列表
self.detected_regions = []
# 元素都是包含一些 int 对象(区域号)的列表
# 这些元素中的区域号代表的区域都是待合并的区域
self.merge_regions = []
# 整合后的皮肤区域,元素的索引即为皮肤区域号,元素都是包含一些 Skin 对象的列表
self.skin_regions = []
# 最近合并的两个皮肤区域的区域号,初始化为 -1
self.last_from, self.last_to = -1, -1
# 色情图像判断结果
= None
# 处理得到的信息
= None
# 图像宽高
, =
# 图像总像素
self.total_pixels = *
def resize(self, maxwidth=1000, maxheight=1000):
"""
基于最大宽高按比例重设图片大小,
注意:这可能影响检测算法的结果
如果没有变化返回 0
原宽度大于 maxwidth 返回 1
原高度大于 maxheight 返回 2
原宽高大于 maxwidth, maxheight 返回 3
maxwidth - 图片最大宽度
maxheight - 图片最大高度
传递参数时都可以设置为 False 来忽略
"""
# 存储返回值
ret = 0
if maxwidth:
if > maxwidth:
wpercent = (maxwidth / )
hsize = int(( * wpercent))
fname =
# 是重采样滤波器,用于抗锯齿
= ((maxwidth, hsize), )
= fname
, =
self.total_pixels = *
ret += 1
if maxheight:
if > maxheight:
hpercent = (maxheight / float())
wsize = int((float() * float(hpercent)))
fname =
= ((wsize, maxheight), )
= fname
, =
self.total_pixels = *
ret += 2
return ret
# 分析函数
def parse(self):
# 如果已有结果,返回本对象
if is not None:
return self
# 获得图片所有像素数据
pixels = ()
# 遍历每个像素
for y in range():
for x in range():
# 得到像素的 RGB 三个通道的值
# [x, y] 是 [(x,y)] 的简便写法
r = pixels[x, y][0] # red
g = pixels[x, y][1] # green
b = pixels[x, y][2] # blue
# 判断当前像素是否为肤色像素
isSkin = True if self._classify_skin(r, g, b) else False
# 给每个像素分配唯一 id 值(1, 2, 3...height*width)
# 注意 x, y 的值从零开始
_id = x + y * + 1
# 为每个像素创建一个对应的 Skin 对象,并添加到 self.skin_map 中
self.skin_map.append((_id, isSkin, None, x, y))
# 若当前像素不为肤色像素,跳过此次循环
if not isSkin:
continue
# 设左上角为原点,相邻像素为符号 *,当前像素为符号 ^,那么相互位置关系通常如下图
# ***
# *^
# 存有相邻像素索引的列表,存放顺序为由大到小,顺序改变有影响
# 注意 _id 是从 1 开始的,对应的索引则是 _id-1
check_indexes = [_id - 2, # 当前像素左方的像素
_id - - 2, # 当前像素左上方的像素
_id - - 1, # 当前像素的上方的像素
_id - ] # 当前像素右上方的像素
# 用来记录相邻像素中肤色像素所在的区域号,初始化为 -1
region = -1
# 遍历每一个相邻像素的索引
for index in check_indexes:
# 尝试索引相邻像素的 Skin 对象,没有则跳出循环
try:
self.skin_map[index]
except IndexError:
break
# 相邻像素若为肤色像素:
if self.skin_map[index].skin:
# 若相邻像素与当前像素的 region 均为有效值,且二者不同,且尚未添加相同的合并任务
if (self.skin_map[index].region != None and
region != None and region != -1 and
self.skin_map[index].region != region and
self.last_from != region and
self.last_to != self.skin_map[index].region) :
# 那么这添加这两个区域的合并任务
self._add_merge(region, self.skin_map[index].region)
# 记录此相邻像素所在的区域号
region = self.skin_map[index].region
# 遍历完所有相邻像素后,若 region 仍等于 -1,说明所有相邻像素都不是肤色像素
if region == -1:
# 更改属性为新的区域号,注意元祖是不可变类型,不能直接更改属性
_skin = self.skin_map[_id - 1]._replace(region=len(self.detected_regions))
self.skin_map[_id - 1] = _skin
# 将此肤色像素所在区域创建为新区域
self.detected_regions.append([self.skin_map[_id - 1]])
# region 不等于 -1 的同时不等于 None,说明有区域号为有效值的相邻肤色像素
elif region != None:
# 将此像素的区域号更改为与相邻像素相同
_skin = self.skin_map[_id - 1]._replace(region=region)
self.skin_map[_id - 1] = _skin
# 向这个区域的像素列表中添加此像素
self.detected_regions[region].append(self.skin_map[_id - 1])
# 完成所有区域合并任务,合并整理后的区域存储到 self.skin_regions
self._merge(self.detected_regions, self.merge_regions)
# 分析皮肤区域,得到判定结果
self._analyse_regions()
return self
# self.merge_regions 的元素都是包含一些 int 对象(区域号)的列表
# self.merge_regions 的元素中的区域号代表的区域都是待合并的区域
# 这个方法便是将两个待合并的区域号添加到 self.merge_regions 中
def _add_merge(self, _from, _to):
# 两个区域号赋值给类属性
self.last_from = _from
self.last_to = _to
# 记录 self.merge_regions 的某个索引值,初始化为 -1
from_index = -1
# 记录 self.merge_regions 的某个索引值,初始化为 -1
to_index = -1
# 遍历每个 self.merge_regions 的元素
for index, region in enumerate(self.merge_regions):
# 遍历元素中的每个区域号
for r_index in region:
if r_index == _from:
from_index = index
if r_index == _to:
to_index = index
# 若两个区域号都存在于 self.merge_regions 中
if from_index != -1 and to_index != -1:
# 如果这两个区域号分别存在于两个列表中
# 那么合并这两个列表
if from_index != to_index:
self.merge_regions[from_index].extend(self.merge_regions[to_index])
del(self.merge_regions[to_index])
return
# 若两个区域号都不存在于 self.merge_regions 中
if from_index == -1 and to_index == -1:
# 创建新的区域号列表
self.merge_regions.append([_from, _to])
return
# 若两个区域号中有一个存在于 self.merge_regions 中
if from_index != -1 and to_index == -1:
# 将不存在于 self.merge_regions 中的那个区域号
# 添加到另一个区域号所在的列表
self.merge_regions[from_index].append(_to)
return
# 若两个待合并的区域号中有一个存在于 self.merge_regions 中
if from_index == -1 and to_index != -1:
# 将不存在于 self.merge_regions 中的那个区域号
# 添加到另一个区域号所在的列表
self.merge_regions[to_index].append(_from)
return
# 合并该合并的皮肤区域
def _merge(self, detected_regions, merge_regions):
# 新建列表 new_detected_regions
# 其元素将是包含一些代表像素的 Skin 对象的列表
# new_detected_regions 的元素即代表皮肤区域,元素索引为区域号
new_detected_regions = []
# 将 merge_regions 中的元素中的区域号代表的所有区域合并
for index, region in enumerate(merge_regions):
try:
new_detected_regions[index]
except IndexError:
new_detected_regions.append([])
for r_index in region:
new_detected_regions[index].extend(detected_regions[r_index])
detected_regions[r_index] = []
# 添加剩下的其余皮肤区域到 new_detected_regions
for region in detected_regions:
if len(region) > 0:
new_detected_regions.append(region)
# 清理 new_detected_regions
self._clear_regions(new_detected_regions)
# 皮肤区域清理函数
# 只保存像素数大于指定数量的皮肤区域
def _clear_regions(self, detected_regions):
for region in detected_regions:
if len(region) > 30:
self.skin_regions.append(region)
# 分析区域
def _analyse_regions(self):
# 如果皮肤区域小于 3 个,不是色情
if len(self.skin_regions) < 3:
= "Less than 3 skin regions ({_skin_regions_size})".format(
_skin_regions_size=len(self.skin_regions))
= False
return
# 为皮肤区域排序
self.skin_regions = sorted(self.skin_regions, key=lambda s: len(s),
reverse=True)
# 计算皮肤总像素数
total_skin = float(sum([len(skin_region) for skin_region in self.skin_regions]))
# 如果皮肤区域与整个图像的比值小于 15%,那么不是色情图片
if total_skin / self.total_pixels * 100 < 15:
= "Total skin percentage lower than 15 ({:.2f})".format(total_skin / self.total_pixels * 100)
= False
return
# 如果最大皮肤区域小于总皮肤面积的 45%,不是色情图片
if len(self.skin_regions[0]) / total_skin * 100 < 45:
= "The biggest region contains less than 45 ({:.2f})".format(len(self.skin_regions[0]) / total_skin * 100)
= False
return
# 皮肤区域数量超过 60个,不是色情图片
if len(self.skin_regions) > 60:
= "More than 60 skin regions ({})".format(len(self.skin_regions))
= False
return
# 其它情况为色情图片
= "Nude!!"
= True
return
# 基于像素的肤色检测技术
def _classify_skin(self, r, g, b):
# 根据RGB值判定
rgb_classifier = r > 95 and \
g > 40 and g < 100 and \
b > 20 and \
max([r, g, b]) - min([r, g, b]) > 15 and \
abs(r - g) > 15 and \
r > g and \
r > b
# 根据处理后的 RGB 值判定
nr, ng, nb = self._to_normalized(r, g, b)
norm_rgb_classifier = nr / ng > 1.185 and \
float(r * b) / ((r + g + b) ** 2) > 0.107 and \
float(r * g) / ((r + g + b) ** 2) > 0.112
# HSV 颜色模式下的判定
h, s, v = self._to_hsv(r, g, b)
hsv_classifier = h > 0 and \
h < 35 and \
s > 0.23 and \
s < 0.68
# YCbCr 颜色模式下的判定
y, cb, cr = self._to_ycbcr(r, g, b)
ycbcr_classifier = 97.5 <= cb <= 142.5 and 134 <= cr <= 176
# 效果不是很好,还需改公式
# return rgb_classifier or norm_rgb_classifier or hsv_classifier or ycbcr_classifier
return ycbcr_classifier
def _to_normalized(self, r, g, b):
if r == 0:
r = 0.0001
if g == 0:
g = 0.0001
if b == 0:
b = 0.0001
_sum = float(r + g + b)
return [r / _sum, g / _sum, b / _sum]
def _to_ycbcr(self, r, g, b):
# 公式来源:
# /questions/19459831/rgb-to-ycbcr-conversion-problems
y = .299*r + .587*g + .114*b
cb = 128 - 0.168736*r - 0.331364*g + 0.5*b
cr = 128 + 0.5*r - 0.418688*g - 0.081312*b
return y, cb, cr
def _to_hsv(self, r, g, b):
h = 0
_sum = float(r + g + b)
_max = float(max([r, g, b]))
_min = float(min([r, g, b]))
diff = float(_max - _min)
if _sum == 0:
_sum = 0.0001
if _max == r:
if diff == 0:
h =
else:
h = (g - b) / diff
elif _max == g:
h = 2 + ((g - r) / diff)
else:
h = 4 + ((r - g) / diff)
h *= 60
if h < 0:
h += 360
return [h, 1.0 - (3.0 * (_min / _sum)), (1.0 / 3.0) * _max]
def inspect(self):
_image = '{} {} {}×{}'.format(, , , )
return "{_image}: result={_result} message='{_message}'".format(_image=_image, _result=, _message=)
# 将在源文件目录生成图片文件,将皮肤区域可视化
def showSkinRegions(self):
# 未得出结果时方法返回
if is None:
return
# 皮肤像素的 ID 的集合
skinIdSet = set()
# 将原图做一份拷贝
simage =
# 加载数据
simageData = ()
# 将皮肤像素的 id 存入 skinIdSet
for sr in self.skin_regions:
for pixel in sr:
()
# 将图像中的皮肤像素设为白色,其余设为黑色
for pixel in self.skin_map:
if not in skinIdSet:
simageData[, ] = 0, 0, 0
else:
simageData[, ] = 255, 255, 255
# 源文件绝对路径
filePath = ()
# 源文件所在目录
fileDirectory = (filePath) + '/'
# 源文件的完整文件名
fileFullName = (filePath)
# 分离源文件的完整文件名得到文件名和扩展名
fileName, fileExtName = (fileFullName)
# 保存图片
('{}{}_{}{}'.format(fileDirectory, fileName,'Nude' if else 'Normal', fileExtName))
if __name__ == "__main__":
import argparse
@itchat.msg_register([TEXT, MAP, CARD, NOTE, SHARING])
def text_reply(msg):
('专业鉴黄十余年,想看看你相册里有多少是黄图??赶紧发给我帮你鉴别', msg['FromUserName'])
@itchat.msg_register([PICTURE, RECORDING, ATTACHMENT, VIDEO])
def download_files(msg):
()
typeSymbol = {
PICTURE: 'img',
VIDEO: 'vid', }.get(, 'fil')
#itchat.send_image(,'filehelper') # 发送图片
#image = ()
fname=()
n = Nude(fname)
(maxheight=800, maxwidth=600)
()#分析函数
()
#print(, ())
#itchat.send_image(,'filehelper') # 发送图片
('经专业鉴定,此图%s' % ('涉黄,请跟我们走一趟' if == True else '清清白白,组织相信你了'), msg['FromUserName'])
#('经专业鉴定,此图%s' % ('涉黄,请跟我们走一趟' if == True else '清清白白,组织相信你了'), 'filehelper')
itchat.auto_login(True)
()