I have a dataframe:
我有一个dataframe:
gene=c("Esr", "Esr", "Esr", "Nop", "Nop", "Nop", "Stu", "Mkp", "Mkp", "P53", "Ard", "Ard")
int_1=c(34,56,544,566,123,00,343,56,22,10,11,19)
int_2=c(24,26,58,56,13,00,34,6,22,10,119,109)
int_3=c(14,36,54,566,12,00,43,56,00,770,11,119)
df1 = cbind.data.frame(gene, int_1, int_2, int_3)
- df1 is 26000 rows long and 36 columns wide.
- df1有26000行长,36列宽。
- I want to make a new df2, where column "gene" is looked for unique strings/text and all values in the rows are summed together for corresponding individual intensity columns.
- 我想做一个新的df2,在其中查找列“gene”,查找唯一的字符串/文本,并将行中的所有值相加,以得到相应的单个强度列。
- In df1 the gene names appear multiple times. The df2 will have each gene only once.
- 在df1中,基因名出现了多次。df2只会有每个基因一次。
I am trying to use tidyverse packages so a solution using those will be very much appreciated (if possible). Thank you so much.
我正在尝试使用tidyverse包,因此使用这些包的解决方案将非常感谢(如果可能的话)。非常感谢。
1 个解决方案
#1
3
We can use dplyr::summarise_all
我们可以使用dplyr::summarise_all
(1) to average values
(1)平均值
library(tidyverse)
df2 <- df1 %>%
group_by(gene) %>%
summarise_all(mean)
df2;
## A tibble: 6 x 4
# gene int_1 int_2 int_3
# <fct> <dbl> <dbl> <dbl>
#1 Ard 15.0 114. 65.0
#2 Esr 211. 36. 34.7
#3 Mkp 39.0 14. 28.0
#4 Nop 230. 23. 193.
#5 P53 10.0 10. 770.
#6 Stu 343. 34. 43.0
(2) to sum values
(2)和值
df2 <- df1 %>%
group_by(gene) %>%
summarise_all(sum)
df2;
## A tibble: 6 x 4
# gene int_1 int_2 int_3
# <fct> <dbl> <dbl> <dbl>
#1 Ard 30. 228. 130.
#2 Esr 634. 108. 104.
#3 Mkp 78. 28. 56.
#4 Nop 689. 69. 578.
#5 P53 10. 10. 770.
#6 Stu 343. 34. 43.
Or in base R you can use aggregate
或者在底数R中,你可以使用聚合
aggregate(cbind(int_1, int_2, int_3) ~ gene, data = df1, sum)
# gene int_1 int_2 int_3
#1 Ard 30 228 130
#2 Esr 634 108 104
#3 Mkp 78 28 56
#4 Nop 689 69 578
#5 P53 10 10 770
#6 Stu 343 34 43
#1
3
We can use dplyr::summarise_all
我们可以使用dplyr::summarise_all
(1) to average values
(1)平均值
library(tidyverse)
df2 <- df1 %>%
group_by(gene) %>%
summarise_all(mean)
df2;
## A tibble: 6 x 4
# gene int_1 int_2 int_3
# <fct> <dbl> <dbl> <dbl>
#1 Ard 15.0 114. 65.0
#2 Esr 211. 36. 34.7
#3 Mkp 39.0 14. 28.0
#4 Nop 230. 23. 193.
#5 P53 10.0 10. 770.
#6 Stu 343. 34. 43.0
(2) to sum values
(2)和值
df2 <- df1 %>%
group_by(gene) %>%
summarise_all(sum)
df2;
## A tibble: 6 x 4
# gene int_1 int_2 int_3
# <fct> <dbl> <dbl> <dbl>
#1 Ard 30. 228. 130.
#2 Esr 634. 108. 104.
#3 Mkp 78. 28. 56.
#4 Nop 689. 69. 578.
#5 P53 10. 10. 770.
#6 Stu 343. 34. 43.
Or in base R you can use aggregate
或者在底数R中,你可以使用聚合
aggregate(cbind(int_1, int_2, int_3) ~ gene, data = df1, sum)
# gene int_1 int_2 int_3
#1 Ard 30 228 130
#2 Esr 634 108 104
#3 Mkp 78 28 56
#4 Nop 689 69 578
#5 P53 10 10 770
#6 Stu 343 34 43