Latex所有常用数学符号吐血整理(包含大括号、等式对齐、矩阵)

时间:2024-11-19 20:43:39

果然是自己搞一个查起来会方便一些,最近天天写数学题解,全是公式 ~

希腊字母:

字母名称 国际音标 大写字母 小写字母 字母名称 国际音标 大写字母 小写字母
alpha /'ælfə/ Α α nu /nju:/ Ν ν
beta /'bi:tə/或 /'beɪtə/ Β β xi 希腊 /ksi/;英美 /ˈzaɪ/ 或 /ˈksaɪ/ Ξ ξ
gamma /'gæmə/ Γ γ omicron /əuˈmaikrən/或 /ˈɑmɪˌkrɑn/ Ο ο
delta /'deltə/ Δ δ pi /paɪ/ Π π
epsilon /'epsɪlɒn/ Ε ε rho /rəʊ/ Ρ ρ
zeta /'zi:tə/ Ζ ζ sigma /'sɪɡmə/ Σ σ, ς
eta /'i:tə/ Η η tau /tɔ:/ 或 /taʊ/ Τ τ
theta /'θi:tə/ Θ θ upsilon /ˈipsilon/或 /ˈʌpsɨlɒn/ Υ υ
iota /aɪ’əʊtə/ Ι ι phi /faɪ/ Φ φ
kappa /'kæpə/ Κ κ chi /kaɪ/ Χ χ
lambda /'læmdə/ Λ λ psi /psaɪ/ Ψ ψ
mu /mju:/ Μ μ omega /'əʊmɪɡə/或 /oʊ’meɡə/ Ω ω


摘自:《一份不太简短的LATEX2介绍》或112分钟学会LATEX2    原版作者:Tobias Oetiker

等式对齐

t e x t = 12345 = 67890 = 13579 \begin{aligned} text & = 12345 & \\ &= 67890 & \\ &= 13579\end{aligned} text=12345=67890=13579
源码:

$$\begin{aligned} text & = 12345  & \\ &= 67890  & \\ &= 13579\end{aligned}$$

例:

φ ( n ) = n × ∏ i = 1 s p i − 1 p i = p 1 × n ′ × ∏ i = 1 s p i − 1 p i = p 1 × φ ( n ′ ) \begin{aligned} \varphi(n) & = n \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} & \\ &= p_1 \times n' \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} & \\ &= p_1 \times \varphi(n') \end{aligned} φ(n)=n×i=1spipi1=p1×n×i=1spipi1=p1×φ(n)

源码:

$$\begin{aligned} \varphi(n) & = n \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}}  & \\ &= p_1 \times n' \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}}  & \\ &= p_1 \times \varphi(n') \end{aligned}$$

大括号

方法一:

$$ f(x)=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.
$$

方法二:
$$ F^{HLLC}=\left\{
\begin{array}{rcl}
F_L       &      & {0      <      S_L}\\
F^*_L     &      & {S_L \leq 0 < S_M}\\
F^*_R     &      & {S_M \leq 0 < S_R}\\
F_R       &      & {S_R \leq 0}
\end{array} \right. $$

方法三:
$$f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}$$

方法一:

f ( x ) = { x = cos ⁡ ( t ) y = sin ⁡ ( t ) z = x y f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. f(x)=xyz===cos(t)sin(t)yx

方法二:
F H L L C = { F L 0 < S L F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. FHLLC=FLFLFRFR0<SLSL0<SMSM0<SRSR0

方法三:
f ( x ) = { 0 x=0 1 x!=0 f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases} f(x)={01x=0x!=0

矩阵

$$
\begin{gathered}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}
\quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\quad
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}
\quad
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}
\end{gathered}
$$

0 1 1 0 ( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 } ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} 0110(0ii0)[0110]{1001}acbdi00i

    A=  \overbrace{\left[
        \begin{array}{ccc}
          1 & 2 & 3 \\
          1 & 2 & 3 \\
           1 & 2 & 3 \\
         \end{array}
     \right]}^{2^{3}}  

A = [ 1 2 3 1 2 3 1 2 3 ] ⏞ 2 3 A= \overbrace{\left[ \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ \end{array} \right]}^{2^{3}} A=111222333 23

    A = \left.\left[
          \begin{array}{ccc}
            1 & 2 & 3 \\
            1 & 2 & 3 \\
            1 & 2 & 3 \\
          \end{array}
        \right]\right\}2^{3} 

A = [ 1 2 3 1 2 3 1 2 3 ] } 2 3 A = \left.\left[ \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ \end{array} \right]\right\}2^{3} A=11122233323

部分内容摘自:《一份不太简短的LATEX2介绍》或112分钟学会LATEX2    原版作者:Tobias Oetiker