z
j
(
i
)
=
f
j
(
i
)
(
x
(
i
)
)
=
w
j
(
i
)
⋅
x
(
i
)
+
b
j
(
i
)
z^{(i)}_{j} = f^{(i)}_{j}(x^{(i)}) = w^{(i)}_{j} \cdot x^{(i)} + b^{(i)}_{j}
zj(i)=fj(i)(x(i))=wj(i)⋅x(i)+bj(i)
x
j
(
i
+
1
)
=
g
(
z
j
(
i
)
)
x^{(i+1)}_{j} = g(z^{(i)}_{j})
xj(i+1)=g(zj(i)),其中假设每个神经元用的都是g为
s
i
g
m
o
i
d
sigmoid
sigmoid函数,不作区分
应用链式法则:
δ
L
δ
w
j
(
i
)
=
δ
L
δ
x
j
(
i
+
1
)
∗
δ
x
j
(
i
+
1
)
δ
z
j
(
i
)
∗
δ
z
j
(
i
)
δ
w
j
(
i
)
\frac{\delta L}{\delta w^{(i)}_{j}}=\frac{\delta L}{\delta x^{(i+1)}_{j}}*\frac{\delta x^{(i+1)}_{j}}{\delta z^{(i)}_{j}}*\frac{\delta z^{(i)}_{j}}{\delta w^{(i)}_{j}}
δwj(i)δL=δxj(i+1)δL∗δzj(i)δxj(i+1)∗δwj(i)δzj(i)
=
δ
L
δ
x
j
(
i
+
1
)
∗
x
j
(
i
+
1
)
∗
(
1
−
x
j
(
i
+
1
)
)
∗
x
j
(
i
)
\ \ \ \ \ \ \ \ \ =\frac{\delta L}{\delta x^{(i+1)}_{j}}*x^{(i+1)}_{j}*(1-x^{(i+1)}_{j})*x^{(i)}_{j}
=δxj(i+1)δL∗xj(i+1)∗(1−xj(i+1))∗xj(i)
δ
L
δ
b
j
(
i
)
=
δ
L
δ
x
j
(
i
+
1
)
∗
δ
x
j
(
i
+
1
)
δ
z
j
(
i
)
∗
δ
z
j
(
i
)
δ
b
j
(
i
)
\frac{\delta L}{\delta b^{(i)}_{j}}=\frac{\delta L}{\delta x^{(i+1)}_{j}}*\frac{\delta x^{(i+1)}_{j}}{\delta z^{(i)}_{j}}*\frac{\delta z^{(i)}_{j}}{\delta b^{(i)}_{j}}
δbj(i)δL=δxj(i+1)δL∗δzj(i)δxj(i+1)∗δbj(i)δzj(i)
=
δ
L
δ
x
j
(
i
+
1
)
∗
x
j
(
i
+
1
)
∗
(
1
−
x
j
(
i
+
1
)
)
\ \ \ \ \ \ \ \ \ =\frac{\delta L}{\delta x^{(i+1)}_{j}}*x^{(i+1)}_{j}*(1-x^{(i+1)}_{j})
=δxj(i+1)δL∗xj(i+1)∗(1−xj(i+1))
计算
δ
L
δ
x
j
(
i
)
\frac{\delta L}{\delta x^{(i)}_{j}}
δxj(i)δL:
δ
L
δ
x
j
(
i
)
=
δ
L
δ
x
j
(
i
+
1
)
∗
δ
x
j
(
i
+
1
)
δ
x
j
(
i
)
\frac{\delta L}{\delta x^{(i)}_{j}} = \frac{\delta L}{\delta x^{(i+1)}_{j}} * \frac{\delta x^{(i+1)}_{j}}{\delta x^{(i)}_{j}}
δxj(i)δL=δx
【自学笔记】神经网络(1)
相关文章
- 【自学笔记】神经网络(1)
- 开源流媒体服务器SRS学习笔记(1) - 安装、推流、拉流
- ANDROID_MARS学习笔记_S03_007_GoogleMap1
- Python基于TensorFlow实现双向长短时记忆循环神经网络加注意力机制回归模型(BiLSTM-Attention回归算法)项目实战-1.项目背景
- MyBatis学习笔记1--初识MyBatis
- 打破创作界限,1天创作精品小红书带货笔记!chatgpt超级写手机器人创作流程介绍。
- 图神经网络(CS224w)学习笔记1 Introduction:Machine Learning for Graphs
- cs224w(图机器学习)2021冬季课程学习笔记1 Introduction; Machine Learning for Graphs
- 【读书笔记-《网络是怎样连接的》- 2】Chapter2_1-协议栈通信详细过程
- JS高级程序设计学习笔记1