import torch
import as nn
import torchaudio
from transformers import ViTModel, Wav2Vec2Model, BertModel
# 定义模型结构
class MultiModalModel():
def __init__(self):
super(MultiModalModel, self).__init__()
# 视觉编码器
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224')
self.vit_lstm = (input_size=768, hidden_size=256, batch_first=True)
# 音频编码器
self.wav2vec = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base')
self.wav2vec_lstm = (input_size=768, hidden_size=256, batch_first=True)
# 文本编码器
self.bert = BertModel.from_pretrained('bert-base-uncased')
# 共享编码器
self.shared_encoder = (256, 128)
# Transformer模块
self.transformer = (d_model=128, nhead=8, num_encoder_layers=3)
# 双模态表示生成模块
self.fc1 = (128, 64)
# 预测层
self.fc2 = (64, 1)
def forward(self, images, audio, text):
# 视觉编码
v_features = self.vit(images).last_hidden_state
v_features, _ = self.vit_lstm(v_features)
# 音频编码
a_features = self.wav2vec(audio).last_hidden_state
a_features, _ = self.wav2vec_lstm(a_features)
# 文本编码
t_features = self.bert(text).last_hidden_state
# 共享编码
v_shared = self.shared_encoder(v_features)
a_shared = self.shared_encoder(a_features)
# Transformer融合
combined_features = ((v_shared, a_shared, t_features), dim=1)
transformer_out = self.transformer(combined_features)
# 双模态表示生成
bimodal_representation = self.fc1(transformer_out)
# 预测
output = self.fc2(bimodal_representation)
return output
# 生成模拟数据
images = (10, 3, 224, 224) # 模拟图像数据
audio = (10, 16000) # 模拟音频数据
text = (0, 30522, (10, 50)) # 模拟文本数据
# 初始化模型
model = MultiModalModel()
# 前向传播
output = model(images, audio, text)
print(output)